Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable application

Author(s):  
Xuanxuan Du ◽  
Binjie Xin ◽  
Jinhao Xu ◽  
Chun Wang
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 285
Author(s):  
Zhongquan Liao ◽  
Yvonne Standke ◽  
Jürgen Gluch ◽  
Katalin Balázsi ◽  
Onkar Pathak ◽  
...  

Silicon nitride–zirconia–graphene composites with high graphene content (5 wt.% and 30 wt.%) were sintered by gas pressure sintering (GPS). The effect of the multilayer graphene (MLG) content on microstructure and fracture mechanism is investigated by multi-scale and in-situ microscopy. Multi-scale microscopy confirms that the phases disperse evenly in the microstructure without obvious agglomeration. The MLG flakes well dispersed between ceramic matrix grains slow down the phase transformation from α to β-Si3N4, subsequent needle-like growth of β-Si3N4 rods and the densification due to the reduction in sintering additives particularly in the case with 30 wt.% MLG. The size distribution of Si3N4 phase shifts towards a larger size range with the increase in graphene content from 5 to 30 wt.%, while a higher graphene content (30 wt.%) hinders the growth of the ZrO2 phase. The composite with 30 wt.% MLG has a porosity of 47%, the one with 5 wt.% exhibits a porosity of approximately 30%. Both Si3N4/MLG composites show potential resistance to contact or indentation damage. Crack initiation and propagation, densification of the porous microstructure, and shift of ceramic phases are observed using in-situ transmission electron microscopy. The crack propagates through the ceramic/MLG interface and through both the ceramic and the non-ceramic components in the composite with low graphene content. However, the crack prefers to bypass ceramic phases in the composite with 30 wt.% MLG.


2020 ◽  
Author(s):  
Johan Chaniot ◽  
Maxime Moreaud ◽  
Loic Sorbier ◽  
Dominique Jeulin ◽  
Jean-Marie Becker ◽  
...  

Morphological characterization of porous media is of paramount interest, mainly due to the connections between their physicochemical properties and their porous microstructure geometry. Heterogeneity can be seen as a geometric characteristic of porous microstructures. In this paper, two novel topological descriptors are proposed, based on the M-tortuosity formalism. Using the concept of geometric tortuosity or morphological tortuosity, a first operator is defined, the H-tortuosity. It estimates the average variations of the morphological tortuosity as a function of the scale, based on Monte Carlo method and assessing the heterogeneity of porous networks. The second descriptor is an extension, named the H-tortuosity-by-iterativeerosions, taking into account different percolating particle sizes. These two topological operators are applied on Cox multi-scale Boolean models, to validate their behaviors and to highlight their discriminative power.


Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

2014 ◽  
Vol 2014 (2) ◽  
pp. 60-71
Author(s):  
Peyman Mohammadmoradi ◽  
◽  
Mohammad Rasaeii ◽  

Sign in / Sign up

Export Citation Format

Share Document