High Temperature Resistant Polymer Gel as Lost Circulation Material for Fractured Formation during Drilling

Author(s):  
Yingrui Bai ◽  
Chengtong Liu ◽  
Jinsheng Sun ◽  
Xiaosen Shang ◽  
Kaihe Lv ◽  
...  
2021 ◽  
Author(s):  
Ahmed Mostafa Samak ◽  
Abdelalim Hashem Elsayed

Abstract During drilling oil, gas, or geothermal wells, the temperature difference between the formation and the drilling fluid will cause a temperature change around the borehole, which will influence the wellbore stresses. This effect on the stresses tends to cause wellbore instability in high temperature formations, which may lead to some problems such as formation break down, loss of circulation, and untrue kick. In this research, a numerical model is presented to simulate downhole temperature changes during circulation then simulate its effect on fracture pressure gradient based on thermo-poro-elasticity theory. This paper also describes an incident occurred during drilling a well in Gulf of Suez and the observations made during this incident. It also gives an analysis of these observations which led to a reasonable explanation of the cause of this incident. This paper shows that the fracture pressure decreases as the temperature of wellbore decreases, and vice versa. The research results could help in determining the suitable drilling fluid density in high-temperature wells. It also could help in understanding loss and gain phenomena in HT wells which may happen due to thermal effect. The thermal effect should be taken into consideration while preparing wellbore stability studies and choosing mud weight of deep wells, HPHT wells, deep water wells, or wells with depleted zones at high depths because cooling effect reduces the wellbore stresses and effective FG. Understanding and controlling cooling effect could help in controlling the reduction in effective FG and so avoid lost circulation and additional unnecessary casing points.


2021 ◽  
Author(s):  
Mumin Abdalla Abdelrahim ◽  
Dr. Bisweswar Ghosh ◽  
Dr. Hadi Belhaj ◽  
Debayan Ghosh

Abstract Hydraulic fracturing, commonly referred to as fracking, is a widely used technology to enhance the productivity of low-perm reservoirs and the aqueous-based fracturing fluids use guar as the rheology builder. Residual polymer layer over the fractured surface results in a reduced matrix to fracture permeability, causing reduced well productivity. This research aims to develop a specialized mannanase enzyme and evaluate its efficiency in degrading linear and cross-linked guar polymer gel as a function of time, temperature, and breaker concentration, to enhance the effectiveness of the fracturing process and yielding higher production. The study begins with developing high-temperature stable mannanase using "protein engineering" tools to minimize denaturation at high temperatures and the underlying formation chemistry, followed by optimization of polymer, crosslinker, and breaker concentration through the measurement of rheological properties at moderate to high temperature. Initial studies were conducted using HT-HP filter press and filter papers as porous media for visual inspection of polymer cake dissolution efficiency. Final conclusions were drawn from the simulated coreflooding studies, wherein the injection and production return permeabilities were investigated on post-fracture and enzyme-treated cores, where the breaker was mixed with the frac fluid applied once the frac fluid is in place. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and degradation pattern of linear and cross-linked gel observed from the break test showed that the enzyme is stable up to 250 °F and can reduce viscosity by more than 1800 cp (99% breaking ability).


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zulhelmi Amir ◽  
Ismail Mohd Saaid ◽  
Badrul Mohamed Jan

This paper presents optimization formulation of organically crosslinked polymer gel for high temperature reservoir conformance control using response surface methodology (RSM). It is always desirable to approach an optimal polymer gel formulation study with adequate performance information related to viscosity and gelation time to minimize excessive water production. In this paper, the effects of polymer and crosslinker concentrations and their influences on gelation time and viscosity were investigated. Central composite design (CCD) was used to determine the optimized organically crosslinked polymer gel formulation. Concentrations of two main raw materials, namely, polyacrylamide (PAM) and polyethylenimine (PEI), were varied in a suitable range. This was to obtain the formulation with the desirable two vital responses, which are viscosity and gelation time. It was found that the results fitted the quadratic equation. Statistically, the quadratic model is reliable and adequate perfectly the variability of the responses obtained from the experimental data. In addition, gelation time and gel viscosity may be controlled by adjusting both polymer and crosslinker concentrations. The optimum formulated organically crosslinked polymer gel with significant desirability factor conditions was achieved at 1.5% w/v of PAM and 0.3% v/v of PEI.


Sign in / Sign up

Export Citation Format

Share Document