High-Temperature Stable Specific Enzyme for Guar Polymer Based Fracturing Fluid Degradation

2021 ◽  
Author(s):  
Mumin Abdalla Abdelrahim ◽  
Dr. Bisweswar Ghosh ◽  
Dr. Hadi Belhaj ◽  
Debayan Ghosh

Abstract Hydraulic fracturing, commonly referred to as fracking, is a widely used technology to enhance the productivity of low-perm reservoirs and the aqueous-based fracturing fluids use guar as the rheology builder. Residual polymer layer over the fractured surface results in a reduced matrix to fracture permeability, causing reduced well productivity. This research aims to develop a specialized mannanase enzyme and evaluate its efficiency in degrading linear and cross-linked guar polymer gel as a function of time, temperature, and breaker concentration, to enhance the effectiveness of the fracturing process and yielding higher production. The study begins with developing high-temperature stable mannanase using "protein engineering" tools to minimize denaturation at high temperatures and the underlying formation chemistry, followed by optimization of polymer, crosslinker, and breaker concentration through the measurement of rheological properties at moderate to high temperature. Initial studies were conducted using HT-HP filter press and filter papers as porous media for visual inspection of polymer cake dissolution efficiency. Final conclusions were drawn from the simulated coreflooding studies, wherein the injection and production return permeabilities were investigated on post-fracture and enzyme-treated cores, where the breaker was mixed with the frac fluid applied once the frac fluid is in place. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and degradation pattern of linear and cross-linked gel observed from the break test showed that the enzyme is stable up to 250 °F and can reduce viscosity by more than 1800 cp (99% breaking ability).

SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Igor Ivanishin ◽  
Hisham A. Nasr-El-Din ◽  
Dmitriy Solnyshkin ◽  
Artem Klyubin

Summary High-temperature (HT) deep carbonate reservoirs are typically drilled using barite (BaSO4) as a weighting material. Primary production in these tight reservoirs comes from the network of natural fractures, which are damaged by the invasion of mud filtrate during drilling operations. For this study, weighting material and drilling fluid were sampled at the same drillsite. X-ray diffraction (XRD) and X-ray fluorescence analyses confirmed the complex composition of the weighting material: 43.2 ± 3.8 wt% of BaSO4 and 47.8 ± 3.3 wt% of calcite (CaCO3); quartz and illite comprised the rest. The drilling fluid was used to form the filter cake in a high-pressure/high-temperature (HP/HT) filter-press apparatus at a temperature of 300°F and differential pressure of 500 psig. Compared with the weighting material, the filter cake contained less CaCO3, but more nondissolvable minerals, including quartz, illite, and kaolinite. This difference in mineral composition makes the filter cake more difficult to remove. Dissolution of laboratory-grade BaSO4, the field sample of the weighting material, and drilling-fluid filter cake were studied at 300°F and 1,000 to 1,050 psig using an autoclave equipped with a magnetic stirrer drive. Two independent techniques were used to investigate the dissolution process: analysis of the withdrawn-fluid samples using inductively coupled plasma-optical emission spectroscopy, and XRD analysis of the solid material left after the tests. The dissolution efficiency of commercial K5-diethylenetriaminepentaacetic acid (DTPA), two K4-ethylenediaminetetraacetic acid (EDTA), Na4-EDTA solutions, and two “barite dissolvers” of unknown composition was compared. K5-DTPA and K4-EDTA have similar efficiency in dissolving BaSO4 as a laboratory-grade chemical and a component of the calcite-containing weighting material. No pronounced dissolution-selectivity effect (i.e., preferential dissolution of CaCO3) was noted during the 6-hour dissolution tests with both solutions. Reported for the first time is the precipitation of barium carbonate (BaCO3) when a mixture of BaSO4 and CaCO3 is dissolved in DTPA or EDTA solutions. BaCO3 composes up to 30 wt% of the solid phase at the end of the 6-hour reaction, and can be dissolved during the field operations by 5 wt% hydrochloric acid. Being cheaper, K4-EDTA is the preferable stimulation fluid. Dilution of this chelate increases its dissolution efficiency. Compared with commonly recommended solutions of 0.5 to 0.6 M, a more dilute solution is suggested here for field application. The polymer breaker and K4-EDTA solution are incompatible; therefore, the damage should be removed in two stages if the polymer breaker is used.


Author(s):  
Yueqiong Wu ◽  
Zhongyang Luo ◽  
Hong Yin ◽  
Tao Wang

Since the surfactant can form rod-like micelles or even cross-link structures, viscoelastic surfactant (VES) fluid has unique rheological characteristics. The demerits of VES fluids have been proven after being applied as the fracturing fluid for several years. However, the fluid has high fluid loss and a low viscosity at high temperature, which limits the application to hydraulic fracturing. This paper focuses on the VES fluid mixed with nanoparticles which should be an effective way to maintain the viscosity at high temperature and high shear rate. The experiments were based on preparation of uniform and stable nanocolloids, which utilize Microfluidizer high shear fluid processor. Dynamic light scattering and microscopic methods are employed to investigate the stability and micro-structure of the VES fluid. The effects of temperature, shear rate and volume fraction of the nanoparticles on rheology of VES were studied. The SiO2 nanoparticles could significantly improve the rheological performance of VES fluid, although the rheological performance at the temperature over 90 °C needs to be enhanced. The mechanisms of interactions between nanoparticles and micelles are also discussed later in the paper. At the end, the potential of VES fluid mixed with nanoparticles during application in fracturing process was discussed.


1987 ◽  
Vol 39 (05) ◽  
pp. 613-619 ◽  
Author(s):  
P.C. Harris ◽  
V.G. Reidenbach

SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 622-631 ◽  
Author(s):  
Feng Liang ◽  
Ghaithan Al-Muntasheri ◽  
Hooisweng Ow ◽  
Jason Cox

Summary In the quest to discover more natural-gas resources, considerable attention has been devoted to finding and extracting gas locked within tight formations with permeability in the nano- to microdarcy range. The main challenges associated with working in such formations are the intrinsically high-temperature and high-pressure bottom conditions. For formations with bottomhole temperatures at approximately 350–400°F, traditional hydraulic-fracturing fluids that use crosslinked polysaccharide gels, such as guar and its derivatives, are not suitable because of significant polymer breakdown in this temperature range. Fracturing fluids that can work at these temperatures require thermally stable synthetic polymers such as acrylamide-based polymers. However, such polymers have to be used at very-high concentrations to suspend proppants. The high-polymer concentrations make it very difficult to completely degrade at the end of a fracturing operation. As a consequence, formation damage by polymer residue can reduce formation conductivity to gas flow. This paper addresses the shortcomings of the current state-of-the-art high-temperature fracturing fluids and focuses on developing a less-damaging, high-temperature-stable fluid that can be used at temperatures up to 400°F. A laboratory study was conducted with this novel system, which comprises a synthetic acrylamide-based copolymer gelling agent and is capable of being crosslinked with an amine-containing polymer-coated nanosized particulate crosslinker (nanocrosslinker). The laboratory data have demonstrated that the temperature stability of the crosslinked fluid is much better than that of a similar fluid lacking the nanocrosslinker. The nanocrosslinker allows the novel fluid system to operate at significantly lower polymer concentrations (25–45 lbm/1,000 gal) compared with current commercial fluid systems (50–87 lbm/1,000 gal) designed for temperatures from 350 to 400°F. This paper presents results from rheological studies that demonstrate superior crosslinking performance and thermal stability in this temperature range. This fracturing-fluid system has sufficient proppant-carrying viscosity, and allows for efficient cleanup by use of an oxidizer-type breaker. Low polymer loading and little or no polymer residue are anticipated to facilitate efficient cleanup, reduced formation damage, better fluid conductivity, and enhanced production rates. Laboratory results from proppant-pack regained-conductivity tests are also presented.


2019 ◽  
Vol 9 (7) ◽  
pp. 1491
Author(s):  
Ruixia Li ◽  
Kaiwei Zhang ◽  
Jiahui Wu ◽  
Wenjuan Liu

In order to analyze the effect of flame retardant and warm mix asphalt (WMA) additives-Sasobit on the flame-retardant performance and pavement performance of asphalt binder, the limiting oxygen index test, conventional performance test, and Superpave evaluation index tests were performed on asphalt binders in the study. The test results show that flame retardant can effectively improve the flame resistance of asphalt binder, while Sasobit has a certain combustion-supporting effect. Therefore, when warm-mixed flame-retardant technology is applied, the concentration of Sasobit should be controlled appropriately. These two modifiers can significantly enhance the high-temperature performance of asphalt binder, but both of them have a slight negative influence on the low-temperature cracking resistance. Sasobit can substantially reduce the high-temperature viscosity of asphalt binder, which helps to improve the construction workability of asphalt binder, while the flame retardant adversely affects the viscosity reduction effect of Sasobit to a certain extent, but the overall impact is not large.


2010 ◽  
Author(s):  
Charles David Armstrong ◽  
Richard Fowler Stevens ◽  
Hoang Van Le ◽  
Christopher J. Stephenson ◽  
Qi Qu

2015 ◽  
Author(s):  
Feng Liang ◽  
Ghaithan Al-Muntasheri ◽  
Hooisweng Ow ◽  
Jason Cox

Sign in / Sign up

Export Citation Format

Share Document