scholarly journals End-gas autoignition fraction and flame propagation rate in laser-ignited primary reference fuel mixtures at elevated temperature and pressure

2021 ◽  
Vol 234 ◽  
pp. 111661
Author(s):  
Andrew Zdanowicz ◽  
Jeffrey Mohr ◽  
Jessica Tryner ◽  
Kara Gustafson ◽  
Bret Windom ◽  
...  
2021 ◽  
Vol 92 (4) ◽  
pp. 043711
Author(s):  
Harm Ridder ◽  
Christoph Sinn ◽  
Georg R. Pesch ◽  
Jan Ilsemann ◽  
Wolfgang Dreher ◽  
...  

CORROSION ◽  
1959 ◽  
Vol 15 (4) ◽  
pp. 29-32
Author(s):  
M. KRULFELD ◽  
M. C. BLOOM ◽  
R. E. SEEBOLD

Abstract A method of applying the hydrogen effusion method to the measurement of corrosion rates in dynamic aqueous systems at elevated temperature and pressure is described. Data obtained in low carbon steel systems are presented, including (1) reproducibility obtained in measured hydrogen effusion rates at a flow velocity of 1 foot per second at a temperature of 600 F and 2000 psi, and (2) a quantitative comparison between the hydrogen effusion rates in static and in low flow velocity dynamic systems at this temperature and pressure. Some observations are included on corrosion rate measurements in a high flow velocity (30 feet per second) loop by the hydrogen effusion method. Implications of these measurements with regard to the comparison between high flow velocity corrosion and low flow velocity corrosion are mentioned and some data indicating high local sensitivity of the hydrogen effusion method are noted. Some possible difficulties involved in the method are pointed out. 2.3.4


1983 ◽  
Vol 19 (5) ◽  
pp. 564-566 ◽  
Author(s):  
A. G. Alekseev ◽  
I. V. Sudakova

ChemCatChem ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 997-1001 ◽  
Author(s):  
Alejandro Mata ◽  
Christopher A. Hone ◽  
Bernhard Gutmann ◽  
Luc Moens ◽  
C. Oliver Kappe

Fire Safety ◽  
2019 ◽  
pp. 66-71
Author(s):  
P. V. Pastuhov ◽  
V. V. Kochubei ◽  
O. I. Lavrenyuk ◽  
B. M. Mykhalichko

Introduction. The development of modern technologies and the elaboration of new materials facilitates the wide use of epoxy resins for instance in industries. Particular attention deserves the various fire retardant coatings making. These coatings are increasingly used to increase fire resistance of details and designs made of metals, plastics, wood in various industrial and civil constructions, and in transport. The very perspective mode producing the effective fire retardant coatings is the direct introduction into the polymeric matrix of epoxy resins of reactive fire retardant agents. Purpose. The aim of this work is to study the effect of the elaborated fire retardant on the ability of epoxy-amine composites modified with copper(II) carbonate to resist the spread of the flame, as well as the effects of water and chemicals. Metods. The flame propagation rate on the surface of horizontally located experimental samples was determined according to all-State Standard 28157-89. Water and chemical resistance were evaluated by a gravimetric method on the polymer mass film change after exposure to distilled water and corrosive media for a certain period of time. Results. The results of experimental studies have shown that samples of the epoxy-amine composites containing 20, 40 and 80 mass parts of CuCO3 per 100 mass part of the binding agent do not propagate the flame horizontally at all. At that, duration of free combustion of these polymer samples did not exceed 2 min. It has been found too that the penetrability of water and chemicals through films based on epoxy-amine composites modified with CuCO3 is reduced due to the formation of chemical bonds between copper(II) carbonate and polyethylenepolyamine. The lowest level of the equilibrium absorption in water and 10% aqueous solutions of H2SO4 and NaOH was watched for samples of those composites that contained 20 mass parts of CuCO3 per 100 mass parts of binder. Conclusion. When studying the effect of copper(II) carbonate on the flame propagation rate, it was found that the epoxy-amine composites containing >20 mass parts of CuCO3 per 100 mass parts of the binding agent, do not propagate the flame and so these are self-extinguishing. The copper(II) carbonate addition to epoxy polymers reduces their sorption capacity in water and solutions of alkalis and acids. These data are the basis to future develop the chemically resistant fire retarding coatings based on epoxy-amine composites modified with copper(II) carbonate. Keywords


Sign in / Sign up

Export Citation Format

Share Document