Numerical simulation of the non-linear deformation of 5-harness satin weaves

2012 ◽  
Vol 61 ◽  
pp. 116-126 ◽  
Author(s):  
A.R. Melro ◽  
P.P. Camanho ◽  
F.M. Andrade Pires ◽  
S.T. Pinho
Author(s):  
Haruyuki Yamamoto ◽  
Lingyu Meng

One major concern for excavation projects is the ground displacement generated around the excavated zone. In this paper, a 2-dimensional model analysis was made on non-linear ground behavior around excavation due to unsteady seepage of groundwater, taking into account the saturated-unsaturated theory by using Toyo-ura sand. The finite-element method and finite-different method were employed to study the space problem and time dimension, respectively. The numerical simulation code implemented by FORTRAN was applied to predict the flow-velocity distribution and the results of ground displacement. To validate the programming, a simple model was tested for comparison with tri-axial test data. The samples were made of Toyo-ura sand with a relative density of 90%. The programming also calculated flow-velocity distribution and ground displacement results of dewatering in excavation work over time. Results showed that the effect of horizontal displacement caused by seepage flow plays a very important role in the displacement field. This numerical simulation method provides a more reasonable computing scheme compared to traditional methods. All have theoretical meaning and applicable value, and also present useful references for the excavation stability and disaster prediction.


Author(s):  
Nilanjan Chakraborty ◽  
Alexander Herbert ◽  
Umair Ahmed ◽  
Hong G. Im ◽  
Markus Klein

AbstractA three-dimensional Direct Numerical Simulation (DNS) database of statistically planar $$H_{2} -$$ H 2 - air turbulent premixed flames with an equivalence ratio of 0.7 spanning a large range of Karlovitz number has been utilised to assess the performances of the extrapolation relations, which approximate the stretch rate and curvature dependences of density-weighted displacement speed $$S_{d}^{*}$$ S d ∗ . It has been found that the correlation between $$S_{d}^{*}$$ S d ∗ and curvature remains negative and a significantly non-linear interrelation between $$S_{d}^{*}$$ S d ∗ and stretch rate has been observed for all cases considered here. Thus, an extrapolation relation, which assumes a linear stretch rate dependence of density-weighted displacement speed has been found to be inadequate. However, an alternative extrapolation relation, which assumes a linear curvature dependence of $$S_{d}^{*}$$ S d ∗ but allows for a non-linear stretch rate dependence of $$S_{d}^{*}$$ S d ∗ , has been found to be more successful in capturing local behaviour of the density-weighted displacement speed. The extrapolation relations, which express $$S_{d}^{*}$$ S d ∗ as non-linear functions of either curvature or stretch rate, have been found to capture qualitatively the non-linear curvature and stretch rate dependences of $$S_{d}^{*}$$ S d ∗ more satisfactorily than the linear extrapolation relations. However, the improvement comes at the cost of additional tuning parameter. The Markstein lengths LM for all the extrapolation relations show dependence on the choice of reaction progress variable definition and for some extrapolation relations LM also varies with the value of reaction progress variable. The predictions of an extrapolation relation which involve solving a non-linear equation in terms of stretch rate have been found to be sensitive to the initial guess value, whereas a high order polynomial-based extrapolation relation may lead to overshoots and undershoots. Thus, a recently proposed extrapolation relation based on the analysis of simple chemistry DNS data, which explicitly accounts for the non-linear curvature dependence of the combined reaction and normal diffusion components of $$S_{d}^{*}$$ S d ∗ , has been shown to exhibit promising predictions of $$S_{d}^{*}$$ S d ∗ for all cases considered here.


2021 ◽  
Vol 316 ◽  
pp. 936-941
Author(s):  
Natalya Ya. Golovina

The work is devoted to the formulation of mathematical models of plastic materials without hardening. A functional is proposed, the requirement of stationarity of which made it possible to formulate the differential equation of stress as a function of deformation. On the linear deformation section, a second-order functional is proposed; on the non-linear deformation section, a fourth-order functional is proposed. A range of boundary value problems is formulated, that ensure the continuity of the function at the boundary of the linear and non-linear sections of the deformation curve. The theoretical strain curve was compared with the samples of experimental points for materials: St3sp steel, steel 35, steel 20HGR, steel 08Kh18N10, titanium alloy VT6, aluminum alloy D16, steel 30KhGSN2A, steel 40Kh2N2MA, and showed a good agreement with the experiment. Thus, a variational model is constructed, that allows one to construct curve deformations of various physically non-linear materials, which will allow one to construct further mathematical models of the resource of such materials.


Author(s):  
Mikhail Sainov

Introduction. The main factor determining the stress-strain state (SSS) of rockfill dam with reinforced concrete faces is deformability of the dam body material, mostly rockfill. However, the deformation properties of rockfill have not been sufficiently studied yet for the time being due to technical complexity of the matter, Materials and methods. To determine the deformation parameters of rockfill, scientific and technical information on the results of rockfill laboratory tests in stabilometers were collected and analyzed, as well as field data on deformations in the existing rockfill dams. After that, the values of rockfill linear deformation modulus obtained in the laboratory and in the field were compared. The laboratory test results were processed and analyzed to determine the parameters of the non-linear rockfill deformation model. Results. Analyses of the field observation data demonstrates that the deformation of the rockfill in the existing dams varies in a wide range: its linear deformation modulus may vary from 30 to 500 МPа. It was found out that the results of the most rockfill tests conducted in the laboratory, as a rule, approximately correspond to the lower limit of the rockfill deformation modulus variation range in the bodies of the existing dams. This can be explained by the discrepancy in density and particle sizes of model and natural soils. Only recently, results of rockfill experimental tests were obtained which were comparable with the results of the field measurements. They demonstrate that depending on the stress state the rockfill linear deformation modulus may reach 700 МPа. The processing of the results of those experiments made it possible to determine the parameters on the non-linear model describing the deformation of rockfill in the dam body. Conclusions. The obtained data allows for enhancement of the validity of rockfill dams SSS analyses, as well as for studying of the impact of the non-linear character of the rockfill deformation on the SSS of reinforced concrete faces of rockfill dams.


Sign in / Sign up

Export Citation Format

Share Document