Effect of ion implantation on material removal mechanism of 6H-SiC in nano-cutting: A molecular dynamics study

2020 ◽  
Vol 174 ◽  
pp. 109476 ◽  
Author(s):  
Bing Liu ◽  
Zongwei Xu ◽  
Yong Wang ◽  
Xiang Gao ◽  
Ruijie Kong
2012 ◽  
Vol 500 ◽  
pp. 314-319 ◽  
Author(s):  
Xun Chen ◽  
Tahsin Tecelli Öpöz ◽  
Akinjide Oluwajobi

This paper presents some research results of the application of finite element method and molecular dynamics in the simulation of grinding surface creation. The comparison of these two methods shows that both methods could illustrate the material removal phenomena and provide useful information of grinding mechanics, but they have different feasible application arranges depending on the level of size scales. The investigation demonstrated that rubbing hypothesis of grinding material removal mechanism is valid at all size level even down to nanometre level. Further investigation areas are identified in the paper.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Changlin Liu ◽  
Wenbin He ◽  
Jianning Chu ◽  
Jianguo Zhang ◽  
Xiao Chen ◽  
...  

AbstractIn this paper, molecular dynamics simulations are carried out to investigate the cutting mechanism during the hybrid machining process combined the thermal and vibration assistants. A modified cutting model is applied to study the material removal behavior and subsurface damage formation in one vibration cycle. The results indicate that during the hybrid machining process, the dominant material removal mechanism could transform from extrusion to shearing in a single vibration cycle. With an increase of the cutting temperature, the generation and propagation of cracks are effectively suppressed while the swelling appears when the dominant material removal mechanism becomes shearing. The formation mechanism of the subsurface damage in one vibration cycle can be distinct according to the stress distribution. Moreover, the generation of the vacancies in workpiece becomes apparent with increasing temperature, which is an important phenomenon in hybrid machining process.


2021 ◽  
Vol 200 ◽  
pp. 110837
Author(s):  
Yexin Fan ◽  
Zongwei Xu ◽  
Ying Song ◽  
Bing Dong ◽  
Zhifu Xue ◽  
...  

2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2021 ◽  
pp. 103773
Author(s):  
Ruiwen Geng ◽  
Xiaojing Yang ◽  
Qiming Xie ◽  
Jianguo Xiao ◽  
Wanqing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document