scholarly journals A probabilistic approach with built-in uncertainty quantification for the calibration of a superelastic constitutive model from full-field strain data

2021 ◽  
Vol 192 ◽  
pp. 110357
Author(s):  
Harshad M. Paranjape ◽  
Kenneth I. Aycock ◽  
Craig Bonsignore ◽  
Jason D. Weaver ◽  
Brent A. Craven ◽  
...  
2011 ◽  
Vol 305 ◽  
pp. 012011 ◽  
Author(s):  
W Wang ◽  
J E Mottershead ◽  
C M Sebastian ◽  
E A Patterson

2019 ◽  
Author(s):  
Harshad M Paranjape ◽  
Kenneth I. Aycock ◽  
Craig Bonsignore ◽  
Jason D. Weaver ◽  
Brent A. Craven ◽  
...  

We implement an approach using Bayesian inference and machine learning to calibrate the material parameters of a constitutive model for the superelastic deformation of NiTi shape memory alloy. We use a diamond-shaped specimen geometry that is suited to calibrate both tensile and compressive material parameters from a single test. We adopt the Bayesian inference calibration scheme to take full-field surface strain measurements obtained using digital image correlation together with global load data as an input for calibration. The calibration is performed by comparing these two experimental quantities of interest with the corresponding results from a simulation library built with the superelastic forward finite element model. We present a machine learning based approach to enrich the simulation library using a surrogate model. This improves the calibration accuracy to the extent permitted by the accuracy of the underlying material model and also improves the computational efficiency. We demonstrate, verify, and partially validate the calibration results through various examples. We also demonstrate how the uncertainty in the calibrated superelastic material parameters can propagate to a subsequent simulation of fatigue loading. This approach is versatile and can be used to calibrate other models of superelastic deformation from data obtained using various modalities. This probabilistic calibration approach can become an integral part of a framework to assess and communicate the credibility of simulations performed in the design of superelastic NiTi articles such as medical devices. The knowledge obtained from this calibration approach is most effective when the limitations of the underlying model and the suitability of the training data used to calibrate the model are understood and communicated.


2011 ◽  
Vol 48 (11-12) ◽  
pp. 1644-1657 ◽  
Author(s):  
Weizhuo Wang ◽  
John E. Mottershead ◽  
Christopher M. Sebastian ◽  
Eann A. Patterson

Measurement ◽  
2021 ◽  
Vol 177 ◽  
pp. 109279
Author(s):  
Huachen Jiang ◽  
Chunfeng Wan ◽  
Kang Yang ◽  
Youliang Ding ◽  
Songtao Xue

Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


Sign in / Sign up

Export Citation Format

Share Document