Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries

2021 ◽  
Vol 200 ◽  
pp. 110776
Author(s):  
Shuli Gao ◽  
Jinbo Hao ◽  
Xinhui Zhang ◽  
Long Li ◽  
Chunling Zhang ◽  
...  
ChemCatChem ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3068-3075 ◽  
Author(s):  
Ruiqi Zhang ◽  
Huixiang Liu ◽  
Chenfeng Wang ◽  
Lincai Wang ◽  
Yanjing Yang ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C20-C20
Author(s):  
Evgeny Antipov ◽  
Nellie Khasanova

Ninety percent of the energy produced today come from fossil fuels, making dramatically negative impact on our future due to rapid consumption of these energy sources, ecological damage and climate change. This justifies development of the renewable energy sources and concurrently efficient large storage devices capable to replace fossil fuels. Li-ion batteries have originally been developed for portable electronic devices, but nowadays new application niches are envisaged in electric vehicles and stationary energy storages. However, to satisfy the needs of these rapidly growing applications, Li-ion batteries require further significant improvement of their properties: capacity and power, cyclability, safety and cost. Cathode is the key part of the Li-ion batteries largely determining their performance. Severe requirements are imposed on a cathode material, which should provide fast reversible intercalation of Li-ions at redox potential close to the upper boundary of electrolyte stability window, possess relatively low molecular weight and exhibit small volume variation upon changing Li-concentration. First generation of the cathode materials for the Li-ion batteries based on the spinel (LiM2O4, M – transition metal) or rock-salt derivatives (LiMO2) has already been widely commercialised. However, the potential to further improve the performance of these materials is almost exhausted. The compounds, containing lithium and transition metal cations together with different polyanions (XmOn)p- (X=B, P, S, Si), are now considered as the most promising cathode materials for the next generation of the Li-ion batteries. Covalently-bonded structural frameworks in these compounds offer long-term structural stability, which is essential for good cyclability and safety. Further advantages are expected from combining different anions (such as (XO4)p- and F- ) in the anion sublattice, with the hope to enhance the specific energy and power of these materials. Various fluoride-phosphates and fluoride-sulphates have been recently discovered, and some of them exhibit attractive electrochemical performance. An overview of the research on the cathode materials for the Li-ion batteries will be presented with special emphasis on crystallography as a guide towards improved properties important for practical applications.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Shofirul Sholikhatun Nisa ◽  
Mintarsih Rahmawati ◽  
Cornelius Satria Yudha ◽  
Hanida Nilasary ◽  
Hartoto Nursukatmo ◽  
...  

Li-ion batteries as a support for future transportation have the advantages of high storage capacity, a long life cycle, and the fact that they are less dangerous than current battery materials. Li-ion battery components, especially the cathode, are the intercalation places for lithium, which plays an important role in battery performance. This study aims to obtain the LiNixMnyCozO2 (NMC) cathode material using a simple flash coprecipitation method. As precipitation agents and pH regulators, oxalic acid and ammonia are widely available and inexpensive. The composition of the NMC mole ratio was varied, with values of 333, 424, 442, 523, 532, 622, and 811. As a comprehensive study of NMC, lithium transition-metal oxide (LMO, LCO, and LNO) is also provided. The crystal structure, functional groups, morphology, elemental composition and material behavior of the particles were all investigated during the heating process. The galvanostatic charge–discharge analysis was tested with cylindrical cells and using mesocarbon microbeads/graphite as the anode. Cells were tested at 2.7–4.25 V at 0.5 C. Based on the analysis results, NMC with a mole ratio of 622 showed the best characteristicd and electrochemical performance. After 100 cycles, the discharged capacity reaches 153.60 mAh/g with 70.9% capacity retention.


2018 ◽  
Vol 20 (39) ◽  
pp. 25437-25445 ◽  
Author(s):  
Bingwen Zhang ◽  
Yina Huang ◽  
Weicheng Bao ◽  
Baolin Wang ◽  
Qiangqiang Meng ◽  
...  

MnC and NbC monolayers are predicted to be stable and promising for Li-ion battery, by functionalization, they exhibit half-metallic property and quantum spin Hall effect, respectively.


2018 ◽  
Vol 5 (4) ◽  
pp. 760-772 ◽  
Author(s):  
Hongming Sun ◽  
Jing Meng ◽  
Lifang Jiao ◽  
Fangyi Cheng ◽  
Jun Chen

Efficient hydrogen generation and storage is an essential prerequisite of a future hydrogen economy.


2020 ◽  
Vol 152 ◽  
pp. 104449 ◽  
Author(s):  
Maximilian Weiss ◽  
Helmut Riedl ◽  
Vincent Moares ◽  
Paul Heinz Mayrhofer ◽  
Andreas Limbeck

Sign in / Sign up

Export Citation Format

Share Document