Intra-row weed density evaluation in rice field using tactile method

2022 ◽  
Vol 193 ◽  
pp. 106699
Author(s):  
Xueshen Chen ◽  
Yuanyang Mao ◽  
Yuesong Xiong ◽  
Long Qi ◽  
Yu Jiang ◽  
...  
2021 ◽  
Vol 13 (2) ◽  
pp. 310
Author(s):  
Kunlin Zou ◽  
Xin Chen ◽  
Fan Zhang ◽  
Hang Zhou ◽  
Chunlong Zhang

Weeds are one of the main factors affecting the yield and quality of agricultural products. Accurate evaluation of weed density is of great significance for field management, especially precision weeding. In this paper, a weed density calculating and mapping method in the field is proposed. An unmanned aerial vehicle (UAV) was used to capture field images. The excess green minus excess red index, combined with the minimum error threshold segmentation method, was used to segment green plants and bare land. A modified U-net was used to segment crops from images. After removing the bare land and crops from the field, images of weeds were obtained. The weed density was evaluated by the ratio of weed area to total area on the segmented image. The accuracy of the green plant segmentation was 93.5%. In terms of crop segmentation, the intersection over union (IoU) was 93.40%, and the segmentation time of a single image was 35.90 ms. Finally, the determination coefficient of the UAV evaluated weed density and the manually observed weed density was 0.94, and the root mean square error was 0.03. With the proposed method, the weed density of a field can be effectively evaluated from UAV images, hence providing critical information for precision weeding.


2020 ◽  
Vol 23 (1) ◽  
pp. 47-58
Author(s):  
SS Tanu ◽  
P Biswas ◽  
S Ahmed ◽  
SC Samanta

A field experiment was conducted at Agronomy Field Laboratory, Patuakhali Science and Technology University, Dumki, Patuakhali from July 2018 to November 2018 to evaluate the effect of sunflower residues and herbicides on the yield and economic performance of transplanted Aman rice. Weed control methods tested were T1 = weedy check (Unweeded control), T2 = Weed-free check by hand weeding twice, T3 = Pendimethalin, T4 = Pretilachlor, T5 = Butachlor, T6 = Pyrazosulfuron ethyl, T7 = Bensulfuron methyl + Acetachlor, T8 = Bispyriback sodium, T9 = 2,4-D amine, T10 = MCPA, T11 = Sunflower residues, T12 = Sunflower residues + 100% Pyrazosulfuron ethyl, T13 = Sunflower residues + 75% Pyrazosulfuron ethyl, T14 = Sunflower residues + 50% Pyrazosulfuron ethyl. The experiment was laid out in a randomized complete block design with fourteen treatments replicated thrice. Weedy check registered significantly the highest total weed density (354.67 m-2) and total weed dry matter (51.81 g-2) while weed-free treatment by hand weeding twice recorded significantly the lowest total weed density (6.67 m-2) and total weed dry matter 0.49 g-2) . Weedy check produced the highest weed index (34.24%) and hand weeding produced the lowest. Among different herbicides applied alone, butachlor had the lowest total weed density (15 m-2) and total weed dry matter (6.43 g-2) after hand weeding. Hand weeding recorded the highest grain yield (5.14 t ha-1) which was statistically similar to pendimethalin, pretilachlor, butachlor, bensulfuron methyl + acetachlor and sunflower residues + 100% pyrazosulfuron ethyl. Higher grain yield was attributed to a higher number of panicle m-2, number of filled grains panicle-1 and 1000-grain weight. The highest gross margin (22955 Tk. ha-1) and benefit-cost ratio (1.32) were obtained from butachlor. Integration of sunflower residues with pyrazosulfuron ethyl produced effective weed suppression and satisfactory yield comparable to butachlor. Although the integration is less profitable than butachlor the farmers can use this technology as a feasible and environmentally sound approach in transplanted Aman rice field. Bangladesh Agron. J. 2020, 23(1): 47-58


2013 ◽  
Vol 133 (7) ◽  
pp. 1279-1284
Author(s):  
Takuro Iwasaki ◽  
Toshiro Ono ◽  
Yohei Otani ◽  
Yukio Fukuda ◽  
Hiroshi Okamoto

2016 ◽  
Vol 53 (3) ◽  
pp. 125-143
Author(s):  
S. González ◽  
M. González ◽  
J. Dominguez ◽  
F. Lasagni

2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


2009 ◽  
Vol 17 (2) ◽  
pp. 195 ◽  
Author(s):  
Zhao Xin ◽  
Lin Chaowen ◽  
Xu Mingqiao ◽  
Huang Jingjing ◽  
Chen Yibing ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document