scholarly journals A Field Weed Density Evaluation Method Based on UAV Imaging and Modified U-Net

2021 ◽  
Vol 13 (2) ◽  
pp. 310
Author(s):  
Kunlin Zou ◽  
Xin Chen ◽  
Fan Zhang ◽  
Hang Zhou ◽  
Chunlong Zhang

Weeds are one of the main factors affecting the yield and quality of agricultural products. Accurate evaluation of weed density is of great significance for field management, especially precision weeding. In this paper, a weed density calculating and mapping method in the field is proposed. An unmanned aerial vehicle (UAV) was used to capture field images. The excess green minus excess red index, combined with the minimum error threshold segmentation method, was used to segment green plants and bare land. A modified U-net was used to segment crops from images. After removing the bare land and crops from the field, images of weeds were obtained. The weed density was evaluated by the ratio of weed area to total area on the segmented image. The accuracy of the green plant segmentation was 93.5%. In terms of crop segmentation, the intersection over union (IoU) was 93.40%, and the segmentation time of a single image was 35.90 ms. Finally, the determination coefficient of the UAV evaluated weed density and the manually observed weed density was 0.94, and the root mean square error was 0.03. With the proposed method, the weed density of a field can be effectively evaluated from UAV images, hence providing critical information for precision weeding.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4442
Author(s):  
Zijie Niu ◽  
Juntao Deng ◽  
Xu Zhang ◽  
Jun Zhang ◽  
Shijia Pan ◽  
...  

It is important to obtain accurate information about kiwifruit vines to monitoring their physiological states and undertake precise orchard operations. However, because vines are small and cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning techniques. First, the location of the kiwifruit plants and vine distribution are extracted from high-precision images collected by UAV. The canopy gradient distribution maps with different noise reduction and distribution effects are generated by modifying the threshold and sampling size using the resampling normalization method. The results showed that the accuracies of the vine segmentation using PSPnet, support vector machine, and random forest classification were 71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The average intersection over union of the deep semantic segmentation was more than or equal to 80% in distribution maps, whereas, in traditional machine learning, the average intersection was between 20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation guidance.


2021 ◽  
Vol 13 (7) ◽  
pp. 1238
Author(s):  
Jere Kaivosoja ◽  
Juho Hautsalo ◽  
Jaakko Heikkinen ◽  
Lea Hiltunen ◽  
Pentti Ruuttunen ◽  
...  

The development of UAV (unmanned aerial vehicle) imaging technologies for precision farming applications is rapid, and new studies are published frequently. In cases where measurements are based on aerial imaging, there is the need to have ground truth or reference data in order to develop reliable applications. However, in several precision farming use cases such as pests, weeds, and diseases detection, the reference data can be subjective or relatively difficult to capture. Furthermore, the collection of reference data is usually laborious and time consuming. It also appears that it is difficult to develop generalisable solutions for these areas. This review studies previous research related to pests, weeds, and diseases detection and mapping using UAV imaging in the precision farming context, underpinning the applied reference measurement techniques. The majority of the reviewed studies utilised subjective visual observations of UAV images, and only a few applied in situ measurements. The conclusion of the review is that there is a lack of quantitative and repeatable reference data measurement solutions in the areas of mapping pests, weeds, and diseases. In addition, the results that the studies present should be reflected in the applied references. An option in the future approach could be the use of synthetic data as reference.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 66
Author(s):  
Rahee Walambe ◽  
Aboli Marathe ◽  
Ketan Kotecha

Object detection in uncrewed aerial vehicle (UAV) images has been a longstanding challenge in the field of computer vision. Specifically, object detection in drone images is a complex task due to objects of various scales such as humans, buildings, water bodies, and hills. In this paper, we present an implementation of ensemble transfer learning to enhance the performance of the base models for multiscale object detection in drone imagery. Combined with a test-time augmentation pipeline, the algorithm combines different models and applies voting strategies to detect objects of various scales in UAV images. The data augmentation also presents a solution to the deficiency of drone image datasets. We experimented with two specific datasets in the open domain: the VisDrone dataset and the AU-AIR Dataset. Our approach is more practical and efficient due to the use of transfer learning and two-level voting strategy ensemble instead of training custom models on entire datasets. The experimentation shows significant improvement in the mAP for both VisDrone and AU-AIR datasets by employing the ensemble transfer learning method. Furthermore, the utilization of voting strategies further increases the 3reliability of the ensemble as the end-user can select and trace the effects of the mechanism for bounding box predictions.


2021 ◽  
Vol 173 ◽  
pp. 95-121
Author(s):  
Juepeng Zheng ◽  
Haohuan Fu ◽  
Weijia Li ◽  
Wenzhao Wu ◽  
Le Yu ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 182 ◽  
Author(s):  
Merhaba Abla ◽  
Huigai Sun ◽  
Zhuyun Li ◽  
Chunxiang Wei ◽  
Fei Gao ◽  
...  

Astragalus membranaceus is an important medicinal plant widely cultivated in East Asia. MicroRNAs (miRNAs) are endogenous regulatory molecules that play essential roles in plant growth, development, and the response to environmental stresses. Cold is one of the key environmental factors affecting the yield and quality of A. membranaceus, and miRNAs may mediate the gene regulation network under cold stress in A. membranaceus. To identify miRNAs and reveal their functions in cold stress response in A. membranaceus, small RNA sequencing was conducted followed by bioinformatics analysis, and quantitative real time PCR (qRT-PCR) analysis was performed to profile the expression of miRNAs under cold stress. A total of 168 conserved miRNAs belonging to 34 families and 14 putative non-conserved miRNAs were identified. Many miRNA targets were predicted and these targets were involved in diversified regulatory and metabolic pathways. By using qRT-PCR, 27 miRNAs were found to be responsive to cold stress, including 4 cold stress-induced and 17 cold-repressed conserved miRNAs, and 6 cold-induced non-conserved miRNAs. These cold-responsive miRNAs probably mediate the response to cold stress by regulating development, hormone signaling, defense, redox homeostasis, and secondary metabolism in A. membranaceus. These cold-corresponsive miRNAs may be used as the candidate genes in further molecular breeding for improving cold tolerance of A. membranaceus.


2021 ◽  
Vol 13 (13) ◽  
pp. 2627
Author(s):  
Marks Melo Moura ◽  
Luiz Eduardo Soares de Oliveira ◽  
Carlos Roberto Sanquetta ◽  
Alexis Bastos ◽  
Midhun Mohan ◽  
...  

Precise assessments of forest species’ composition help analyze biodiversity patterns, estimate wood stocks, and improve carbon stock estimates. Therefore, the objective of this work was to evaluate the use of high-resolution images obtained from Unmanned Aerial Vehicle (UAV) for the identification of forest species in areas of forest regeneration in the Amazon. For this purpose, convolutional neural networks (CNN) were trained using the Keras–Tensorflow package with the faster_rcnn_inception_v2_pets model. Samples of six forest species were used to train CNN. From these, attempts were made with the number of thresholds, which is the cutoff value of the function; any value below this output is considered 0, and values above are treated as an output 1; that is, values above the value stipulated in the Threshold are considered as identified species. The results showed that the reduction in the threshold decreases the accuracy of identification, as well as the overlap of the polygons of species identification. However, in comparison with the data collected in the field, it was observed that there exists a high correlation between the trees identified by the CNN and those observed in the plots. The statistical metrics used to validate the classification results showed that CNN are able to identify species with accuracy above 90%. Based on our results, which demonstrate good accuracy and precision in the identification of species, we conclude that convolutional neural networks are an effective tool in classifying objects from UAV images.


Sign in / Sign up

Export Citation Format

Share Document