In silico identification of outer membrane protein (Omp) and subunit vaccine design against pathogenic Vibrio cholerae

2016 ◽  
Vol 65 ◽  
pp. 61-68 ◽  
Author(s):  
Pradipta Ranjan Rauta ◽  
Sarbani Ashe ◽  
Debasis Nayak ◽  
Bismita Nayak
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Eva Bauwens ◽  
Myrthe Joosten ◽  
Joemar Taganna ◽  
Mirko Rossi ◽  
Ayla Debraekeleer ◽  
...  

Microbiology ◽  
2005 ◽  
Vol 151 (9) ◽  
pp. 2975-2986 ◽  
Author(s):  
Bisweswar Nandi ◽  
Ranjan K. Nandy ◽  
Amit Sarkar ◽  
Asoke C. Ghose

The outer-membrane protein OmpW of Vibrio cholerae was studied with respect to its structure, functional properties and regulation of expression. On SDS-PAGE, the membrane-associated form of OmpW protein (solubilized by either 0·1 % or 2 % SDS at 25 °C) migrated as a monomer of 19 kDa that changed to 21 kDa on boiling. The protein was hyperexpressed in Escherichia coli in the histidine-tagged form and the purified His6-OmpW (heated or unheated) migrated as a 23 kDa protein on SDS-PAGE. Circular dichroism and Fourier-transform infrared spectroscopic analyses of the recombinant protein showed the presence of β-structures (∼40 %) with minor amounts (8–15 %) of α-helix. These results were consistent with those obtained by computational analysis of the sequence data of the protein using the secondary structure prediction program Jnet. The recombinant protein did not exhibit any porin-like property in a liposome-swelling assay. An antiserum to the purified protein induced a moderate level (66·6 % and 33·3 % at 1 : 50 and 1 : 100 dilutions, respectively) of passive protection against live vibrio challenge in a suckling mouse model. OmpW-deficient mutants of V. cholerae strains were generated by insertion mutagenesis. In a competitive assay in mice, the intestinal colonization activities of these mutants were found to be either only marginally diminished (for O1 strains) or 10-fold less (for an O139 strain) as compared to those of the corresponding wild-type strains. The OmpW protein was expressed in vivo as well as in vitro in liquid culture medium devoid of glucose. Interestingly, the glucose-dependent regulation of OmpW expression was less prominent in a ToxR− mutant of V. cholerae. Further, the expression of OmpW protein was found to be dependent on in vitro cultural conditions such as temperature, salinity, and availability of nutrients or oxygen. These results suggest that the modulation of OmpW expression by environmental factors may be linked to the adaptive response of the organism under stress conditions.


2019 ◽  
Vol 221 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Delia F Tifrea ◽  
Sukumar Pal ◽  
Luis M de la Maza

Abstract Background Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Here, we determined the ability of a C. trachomatis recombinant major outer membrane protein (rMOMP) vaccine to elicit cross-serogroup protection. Methods Female C3H/HeN mice were vaccinated by mucosal and systemic routes with C. trachomatis serovar D (UW-3/Cx) rMOMP and challenged in the ovarian bursa with serovars D (UW-3/Cx), D (UCI-96/Cx), E (IOL-43), or F (N.I.1). CpG-1826 and Montanide ISA 720 were used as adjuvants. Results Immune responses following vaccination were more robust against the most closely related serovars. Following a genital challenge (as determined by number of mice with positive vaginal cultures, number of positive cultures, number of inclusion forming units recovered, and number of days with positive cultures) mice challenged with C. trachomatis serovars of the same complex were protected but not those challenged with serovar F (N.I.1) from a different subcomplex. Females were caged with male mice. Based on fertility rates, number of embryos, and hydrosalpinx formation, vaccinated mice were protected against challenges with serovars D (UW-3/Cx), D (UCI-96/Cx), and E (IOL-43) but not F (N.I.1). Conclusions This is the first subunit vaccine shown to protect mice against infection, pathology, and infertility caused by different C. trachomatis serovars.


2016 ◽  
Vol 8 (3) ◽  
pp. 269-283 ◽  
Author(s):  
Kyaw Min Aung ◽  
Annika E. Sjöström ◽  
Ulrich von Pawel-Rammingen ◽  
Kristian Riesbeck ◽  
Bernt Eric Uhlin ◽  
...  

Cholera epidemics are caused by Vibrio cholerae serogroups O1 and O139, whereas strains collectively known as non-O1/non-O139 V. cholerae are found in cases of extraintestinal infections and bacteremia. The mechanisms and factors influencing the occurrence of bacteremia and survival of V. cholerae in normal human serum have remained unclear. We found that naturally occurring IgG recognizing V. cholerae outer membrane protein U (OmpU) mediates a serum-killing effect in a complement C1q-dependent manner. Moreover, outer membrane vesicles (OMVs) containing OmpU caused enhanced survival of highly serum-sensitive classical V. cholerae in a dose-dependent manner. OMVs from wild-type and ompU mutant V. cholerae thereby provided a novel means to verify by extracellular transcomplementation the involvement of OmpU. Our data conclusively indicate that loss, or reduced expression, of OmpU imparts resistance to V. cholerae towards serum killing. We propose that the difference in OmpU protein levels is a plausible reason for differences in serum resistance and the ability to cause bacteremia observed among V. cholerae biotypes. Our findings provide a new perspective on how naturally occurring antibodies, perhaps induced by members of the microbiome, may play a role in the recognition of pathogens and the provocation of innate immune defense against bacteremia.


Sign in / Sign up

Export Citation Format

Share Document