Aortic Hemodynamics Assessment prior and after Valve Sparing Reconstruction: A Patient-Specific 4D flow-based FSI Model

Author(s):  
Guido Nannini ◽  
Alessandro Caimi ◽  
Maria Chiara Palumbo ◽  
Simone Saitta ◽  
Leonard N. Girardi ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David R. Rutkowski ◽  
Alejandro Roldán-Alzate ◽  
Kevin M. Johnson

AbstractBlood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Gwendolyn Williams ◽  
Suraj Thyagaraj ◽  
Audrey Fu ◽  
John Oshinski ◽  
Daniel Giese ◽  
...  

Abstract Background Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. Methods An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. Results Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). Conclusion Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Jeesoo Lee ◽  
Nadia El hangouche ◽  
Liliana Ma ◽  
Michael Scott ◽  
Michael Markl ◽  
...  

Introduction: 4D flow MRI can assess transvalvular velocity, but validation against continuous wave (CW) Doppler echo is limited in high-velocity regurgitation and stenosis situations. We sought to compare 4D flow MRI and echo peak velocity using a pulsatile echo-MRI flow phantom. Materials and Methods: An MRI-compatible flow phantom with restrictive orifice situated was driven by a left ventricular assist device at 50 bpm (figure 1A). Three orifice shapes were tested: circular, elliptical and 3D-printed patient-specific mitral regurgitant orifice model of prolapse with areas of 0.5, 0.41 and 0.35 cm 2 , respectively. CW Doppler was acquired with peak velocity extracted from the profile. Retrospectively-gated 4D flow MRI was performed (spatial resolution = 2 mm isotropic, temporal resolution = 36 ms, encoding velocity = 400 cm/s). Maximal velocity magnitude was extracted volumetrically (figure 1B). An echo-mimicking profile was also obtained with a “virtual” ultrasound beam in the 4D flow data to simulate CW Doppler (figure 1C). Bland-Altman analysis was used to assess the agreement of temporal peak velocities. Results: 4D flow MRI demonstrated a centrally directed jet for the circular and elliptical orifices and an oblique jet for the prolapse orifice (figure 1B). Peak velocities were in excellent agreement between 4D flow MRI vs. echo for the circular (peak: 5.13 vs. 5.08 m/s, bias = 0.06 ± 0.66 m/s, figure 1D) and the elliptical orifice (peak: 4.95 vs. 4.79 m/s, bias = 0.07 ± 0.87 m/s, figure 1E). The prolapse orifice velocity was underestimated somewhat by MRI by ~10% (peak: 4.41 vs. 4.90 m/s, bias=0.26±1.18, figure 1F). Conclusion: 4D flow MRI can quantify high velocities like echo for simple geometries while underestimating for more complex geometry, likely due to partial volume effects. Further investigation is warranted to systematically investigate the effects of 4D flow MRI spatial and temporal resolution as well as the jet angle on velocity quantification accuracy.


2017 ◽  
Vol 3 (2) ◽  
pp. 321-324 ◽  
Author(s):  
Pavlo Yevtushenko ◽  
Florian Hellmeier ◽  
Jan Bruening ◽  
Titus Kuehne ◽  
Leonid Goubergrits

AbstractCFD has gained significant attention as a tool to model aortic hemodynamics. However, obtaining accurate patient-specific boundary conditions still poses a major challenge and represents a major source of uncertainties, which are difficult to quantify. This study presents an attempt to quantify these uncertainties by comparing 14 patient-specific simulations of the aorta (reference method), each exhibiting stenosis, against simulations using the same geometries without the branching vessels of the aortic arch (simplified method).Results were evaluated by comparing pressure drop along the aorta, secondary flow degree (SFD) and surface-averaged wall shear stress (WSS) for each patient. The comparison shows little difference in pressure drop between the two methods (simplified-reference) with the mean difference being 1.2 mmHg (standard deviation: 3.0 mmHg). SFD and WSS, however, show striking differences between the methods: SFD downstream of the stenosis is on average 61 % higher in the simplified cases, while WSS is on average 3.0 Pa lower in the simplified cases.Although unphysiological, the comparison of both methods gives an upper bound for the error introduced by uncertainties in branching vessel boundary conditions. For the pressure drop this error appears to be remarkably low, while being unacceptably high for SFD and WSS.


2014 ◽  
Vol 54 (4) ◽  
pp. 943-953 ◽  
Author(s):  
F. Auricchio ◽  
M. Conti ◽  
A. Lefieux ◽  
S. Morganti ◽  
A. Reali ◽  
...  

Author(s):  
Ryan L. Spilker ◽  
Charles A. Taylor

Computational models enable the calculation of quantities that are impractical or impossible to measure and the prediction of physiological changes due to interventions. In order to be useful, cardiovascular models must be both rooted in physical principles and designed such that measured or otherwise desired features of the cardiovascular system are reproduced. The former requirement has motivated the development of image-based anatomic models, patient-specific inflow boundary conditions, deformable vascular walls, outflow boundary conditions that represent the influence of the downstream circulation, and multiscale models. The development of approaches to address the latter requirement, reproducing desired features of the circulation, is a critical area of modeling research that has received comparatively little attention.


Author(s):  
Susanne Schnell ◽  
Michael J Rose ◽  
Can Wu ◽  
Julio Garcia ◽  
Joshua D Robinson ◽  
...  

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
David R. Rutkowski ◽  
Rafael Medero ◽  
Timothy A. Ruesink ◽  
Alejandro Roldán-Alzate

Abstract The Fontan procedure is a successful palliation for single ventricle defect. Yet, a number of complications still occur in Fontan patients due to abnormal blood flow dynamics, necessitating improved flow analysis and treatment methods. Phase-contrast magnetic resonance imaging (MRI) has emerged as a suitable method for such flow analysis. However, limitations on altering physiological blood flow conditions in the patient while in the MRI bore inhibit experimental investigation of a variety of factors that contribute to impaired cardiovascular health in these patients. Furthermore, resolution and flow regime limitations in phase contrast (PC) MRI pose a challenge for accurate and consistent flow characterization. In this study, patient-specific physical models were created based on nine Fontan geometries and MRI experiments mimicking low- and high-flow conditions, as well as steady and pulsatile flow, were conducted. Additionally, a particle image velocimetry (PIV)-compatible Fontan model was created and flow was analyzed with PIV, arterial spin labeling (ASL), and four-dimensional (4D) flow MRI. Differences, though nonstatistically significant, were observed between flow conditions and between patient-specific models. Large between-model variation supported the need for further improvement for patient-specific modeling on each unique Fontan anatomical configuration. Furthermore, high-resolution PIV and flow-tracking ASL data provided flow information that was not obtainable with 4D flow MRI alone.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
David G Guzzardi ◽  
Pim van Ooij ◽  
Alex J Barker ◽  
Giampaolo Martufi ◽  
Katherine E Olsen ◽  
...  

Introduction: A suspected genetic cause for bicuspid aortic valve (BAV) aortopathy has led to aggressive resection strategies. Using 4D flow MRI, we documented increased regional wall shear stress (WSS) in BAV patients. Local hemodynamics may exacerbate extracellular matrix (ECM) degradation leading to disease progression. If validated, preoperative regional hemodynamic assessment could be used to guide more targeted patient-specific aortic resection. For the first time, we correlated regional WSS with aortic tissue remodeling in BAV patients. Methods & Results: BAV patients (N=11) undergoing ascending aortic resection received preoperative 4D flow MRI with regional WSS differences mapped. Paired aortic wall samples (from same-patient with elevated WSS paired to normal WSS regions) were collected during surgery and compared using histology (pentachrome), biomechanics (biaxial mechanical testing), and ECM regulation (protein expression). Patient mean age: 49±18 years; mean aortic diameter: 4.6±0.7cm (range: 3.6 - 6.3cm); 55% had R+L fusion pattern; 36% had severe aortic stenosis. All patients had heterogeneous WSS patterns with regions of elevated WSS adjacent to those of normal WSS. By histology, regions of increased WSS showed greater medial elastin fragmentation, fibrosis, and cystic medial necrosis compared to adjacent areas of normal WSS. Regions of increased WSS showed increased elastic modulus (fold change±SD: 1.53±0.68; P=0.06, N=5) and collagen stiffness (1.37±0.49; P=0.07, N=5) compared to normal WSS regions suggesting altered distensibility. Multiplex protein analyses of ECM regulatory molecules revealed an increase in transforming growth factor β-1 (1.49±0.71, P=0.02), MMP-1 (1.62±0.84; P=0.01), MMP-2 (1.49±1.00; P=0.06), MMP-3 (1.23±0.36; P=0.02), MMP-7 (1.57±0.75; P=0.02), and TIMP-2 (1.26±0.33; P=0.01) in elevated WSS regions suggesting ECM dysregulation consistent with aortic remodeling. Conclusions: In BAV aorta, regional WSS corresponds with local histologic abnormalities, altered biomechanics, and ECM dysregulation. These novel data strongly implicate local hemodynamics as a mediator of BAV aortopathy. With further validation, 4D flow MRI could be used to guide personalized resection strategies.


Sign in / Sign up

Export Citation Format

Share Document