Water desalination by forward osmosis: dynamic performance assessment and experimental validation using MgCl2 and NaCl as draw solutes

Author(s):  
Jaouad Eddouibi ◽  
Souad Abderafi ◽  
Sébastien Vaudreuil ◽  
Tijani Bounahmidi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


2021 ◽  
Vol 324 ◽  
pp. 173-178
Author(s):  
Terence Tumolva ◽  
Kenneth Carmelo Madamba ◽  
Isabelle Gabrielle Nunag ◽  
Vinz Gabriel Villanueva

Current available methods for water desalination are energy intensive, expensive, and not feasible for small-scale applications. As an alternative, hydrogels may be utilized as a draw agent and semi-permeable membrane forward osmosis by acting as both to desalinate water. This study aims to synthesize and characterize hydrogels made from cellulose derivatives and reduced graphene oxide nanofillers in order to desalinate and remove microbes from seawater without requiring a large energy input. The hydrogels are formed by combining carboxymethyl cellulose, hydroxymethyl cellulose, reduced graphene oxide, and water to form a paste which is soaked in a crosslinking solution made of citric acid. Swelling, compression, antimicrobial efficiency and desalination efficiency tests were done. The hydrogel that obtained the highest values has a swelling ratio of 1,447%, compressive strength of 4 bar, desalination efficiency of 30%, and antimicrobial properties.


2015 ◽  
Vol 4 (2) ◽  
pp. 319-329 ◽  
Author(s):  
Tripti Mishra ◽  
RK Srivastava

The current study aims at the selection of an appropriate draw solute for forward osmosis process. Separation and recovery of the draw solute are the major criteria for the selection of draw solute for forward osmosis process. Therefore in this investigation six inorganic fertilizers draws solute were selected. The selections of inorganic fertilizers as draw solute eliminate the need of removal and recovery of draw solute from the final product. The final product water of forward osmosis process has direct application in agricultural as nutrient rich water for irrigation. These inorganic fertilizers were tested based on their water extraction (water flux) capacity. This experimental water flux was compared with the observed water flux. It was noted that the observed water flux is much higher than the attained experimental water flux. The difference of these two fluxes was used to calculate the performance ratio of each selected fertilizer. Highest performance ratio was shown by low molecular weight compound ammonium nitrate (22.73) and potassium chloride (21.03) at 1 M concentration, whereas diammonium phosphate (DAP) which has highest molecular weight among all the selected fertilizer show the lowest performance ratio (10.02) at 2 M concentration. DOI: http://dx.doi.org/10.3126/ije.v4i2.12660 International Journal of Environment Vol.4(2) 2015: 319-329


Desalination ◽  
2019 ◽  
Vol 468 ◽  
pp. 114082 ◽  
Author(s):  
B.C. Ricci ◽  
B. Skibinski ◽  
K. Koch ◽  
C. Mancel ◽  
C.Q. Celestino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document