Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/matrix adhesion

2004 ◽  
Vol 35 (4) ◽  
pp. 477-487 ◽  
Author(s):  
Ki-Young Kim ◽  
Lin Ye
2020 ◽  
Vol 55 (11) ◽  
pp. 4717-4733 ◽  
Author(s):  
Nadiim Domun ◽  
Keith R. Paton ◽  
Bamber R. K. Blackman ◽  
Cihan Kaboglu ◽  
Samireh Vahid ◽  
...  

AbstractIn this study, the effects of adding nanofillers to an epoxy resin (EP) used as a matrix in glass fibre-reinforced plastic (GFRP) composites have been investigated. Both 1D and 2D nanofillers were used, specifically (1) carbon nanotubes (CNTs), (2) few-layer graphene nanoplatelets (GNPs), as well as hybrid combinations of (3) CNTs and boron nitride nanosheets, and (4) GNPs and boron nitride nanotubes (BNNTs). Tensile tests have shown improvements in the transverse stiffness normal to the fibre direction of up to about 25% for the GFRPs using the ‘EP + CNT’ and the ‘EP + BNNT + GNP’ matrices, compared to the composites with the unmodified epoxy (‘EP’). Mode I and mode II fracture toughness tests were conducted using double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively. In the quasi-static mode I tests, the values of the initiation interlaminar fracture toughness, $$ G_{\text{IC}}^{\text{C}} $$GICC, of the GFRP composites showed that the transfer of matrix toughness to the corresponding GFRP composite is greatest for the GFRP composite with the GNPs in the matrix. Here, a coefficient of toughness transfer (CTT), defined as the ratio of mode I initiation interlaminar toughness for the composite to the bulk polymer matrix toughness, of 0.68 was recorded. The highest absolute values of the mode I interlaminar fracture toughness at crack initiation were achieved for the GFRP composites with the epoxy matrix modified with the hybrid combinations of nanofillers. The highest value of the CTT during steady-state crack propagation was ~ 2 for all the different types of GFRPs. Fractographic analysis of the composite surfaces from the DCB and ENF specimens showed that failure was by a combination of cohesive (through the matrix) and interfacial (along the fibre/matrix interface) modes, depending on the type of nanofillers used.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2695
Author(s):  
Bangwei Lan ◽  
Yi Liu ◽  
Song Mo ◽  
Minhui He ◽  
Lei Zhai ◽  
...  

Carbon fiber reinforced thermosetting polyimide (CF/TSPI) composites were interleaved with thermally stable thermoplastic polyimide (TPPI) fiber veils in order to improve the interlaminar fracture toughness without sacrificing the heat resistance. Both of the mode I and mode II interlaminar fracture toughness (GIC and GIIC) for the untoughened laminate and TPPI fiber veils interleaved laminates were characterized by the double cantilever beam (DCB) test and end notch flexure (ENF) test, respectively. It is found that the TPPI fiber veils interleaved laminates exhibit extremely increased fracture toughness than the untoughened one. Moreover, the areal density of TPPI greatly affected the fracture toughness of laminates. A maximum improvement up to 179% and 132% on GIC and GIIC is obtained for 15 gsm fiber veils interleaved laminate, which contributes to the existence of bicontinuous TPPI/TSPI structure in the interlayer according to the fractography analysis. The interlaminar fracture behavior at elevated temperatures for 15 gsm fiber veils interleaved laminate were also investigated. The results indicated that the introduction of thermally stable TPPI fiber veils could enhance the fracture toughness of CF/TSPI composites by exceeding 200% as compared to the untoughened one even as tested at 250 °C.


Sign in / Sign up

Export Citation Format

Share Document