Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane

Author(s):  
Fang Wang ◽  
Yadong Wu ◽  
Yudong Huang
2020 ◽  
Vol 193 ◽  
pp. 108010
Author(s):  
Beom-Gon Cho ◽  
Shalik Ram Joshi ◽  
Jaekyo Lee ◽  
Young-Bin Park ◽  
Gun-Ho Kim

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 638 ◽  
Author(s):  
Wenguang Jiang ◽  
Xiangguo Li ◽  
Yang Lv ◽  
Mingkai Zhou ◽  
Zhuolin Liu ◽  
...  

The influence of graphene oxide (GO) and polyvinyl alcohol (PVA) fiber on the mechanical performance, durability, and microstructure of cement-based materials was investigated in this study. The results revealed that compared with a control sample, the mechanical strength and durability of cement-based materials were significantly improved by adding PVA fiber and GO. The compressive and flexural strength at 28 d were increased by 30.2% and 39.3%, respectively. The chloride migration coefficient at 28 d was reduced from 7.3 × 10−12 m2/s to 4.3 × 10−12 m2/s. Under a sulfate corrosion condition for 135 d, the compressive and flexural strength still showed a 13.9% and 12.3% gain, respectively. Furthermore, from the Mercury Intrusion Porosimetry (MIP) test, with the incorporation of GO, the cumulative porosity decreased from more than 0.13 cm3/g to about 0.03 cm3/g, and the proportion of large capillary pores reduced from around 80% to 30% and that of medium capillary pores increased from approximately 20% to 50%. Scanning electron microscope (SEM) images showed a significant amount of hydration products adhering to the surface of PVA fiber in the GO and PVA fiber modified sample. The addition of GO coupling with PVA fiber in cement-based materials could promote hydration of cement, refine the microstructure, and significantly improve mechanical strength and durability.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89083-89091 ◽  
Author(s):  
Huijuan Zhang ◽  
Xianjuan Pang ◽  
Yuan Qi

A pH-sensitive and mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite semi-IPN hydrogel was designed and prepared. The composite semi-IPN hydrogel showed superior mechanical strength and pH-dependent swelling behavior.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1142 ◽  
Author(s):  
Iolanda Francolini ◽  
Elena Perugini ◽  
Ilaria Silvestro ◽  
Mariangela Lopreiato ◽  
Anna Scotto d’Abusco ◽  
...  

Tissue engineering is a highly interdisciplinary field of medicine aiming at regenerating damaged tissues by combining cells with porous scaffolds materials. Scaffolds are templates for tissue regeneration and should ensure suitable cell adhesion and mechanical stability throughout the application period. Chitosan (CS) is a biocompatible polymer highly investigated for scaffold preparation but suffers from poor mechanical strength. In this study, graphene oxide (GO) was conjugated to chitosan at two weight ratios 0.3% and 1%, and the resulting conjugates were used to prepare composite scaffolds with improved mechanical strength. To study the effect of GO oxidation degree on scaffold mechanical and biological properties, GO samples at two different oxygen contents were employed. The obtained GO/CS scaffolds were highly porous and showed good swelling in water, though to a lesser extent than pure CS scaffold. In contrast, GO increased scaffold thermal stability and mechanical strength with respect to pure CS, especially when the GO at low oxygen content was used. The scaffold in vitro cytocompatibility using human primary dermal fibroblasts was also affected by the type of used GO. Specifically, the GO with less content of oxygen provided the scaffold with the best biocompatibility.


2020 ◽  
Vol 20 (8) ◽  
pp. 4714-4721 ◽  
Author(s):  
Jiaye Ye ◽  
Chun Wu ◽  
Wei Qin ◽  
Fangfang Zhong ◽  
Mei Ding

The purpose of this study was to improve the repulsion ability of sulfonated poly(ether ether ketone) (SPEEK) membrane for the vanadium ions crossover. For this purpose graphene oxide (GO) nanosheet and titanium dioxide (TiO2) nanoparticles were employed into the polymer matrix to prepare SPEEK/GO/TiO2 hybrid membrane via solution-casting method for vanadium redox flow battery (VRFB). The morphology, permeability of vanadium ions and device performance of asprepared membrane were investigated and discussed. It was observed that with the barrier block effect by the filler, the VRFB single cell with the optimized SPEEK/GO/TiO2 hybrid membrane exhibited high coulombic efficiency (~99%), excellent energy efficiency (~85%) and vigorous cyclability (~97.2% capacity retention after 100 cycles). Moreover, the VRFB cell with this blend membrane showed lower vanadium ions permeability than Nafion 212 or pure SPEEK membranes. These results demonstrated that the comprehensive properties of hybrid membrane have been remarkably improved comparing to pristine SPEEK which suggested that the hybrid membrane was applicable for VRFB energy storage system.


2020 ◽  
Vol 12 (42) ◽  
pp. 47911-47920
Author(s):  
Kazuto Hatakeyama ◽  
Yoshie Ishikawa ◽  
Kazuhiro Kirihara ◽  
Tsuyohito Ito ◽  
Koichi Mayumi ◽  
...  

2019 ◽  
Vol 7 (43) ◽  
pp. 24814-24829 ◽  
Author(s):  
Yitian Wang ◽  
Qiang Chang ◽  
Rixing Zhan ◽  
Kaige Xu ◽  
Ying Wang ◽  
...  

A versatile hydrogel with extraordinary mechanical strength and self-healing efficiency was developed by integrating physically crosslinked graphene oxide into a chemically crosslinked polyacrylic acid network.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4198-4202 ◽  
Author(s):  
Ashok D. Ugale ◽  
LinLin Chi ◽  
Min-Kyu Kim ◽  
Sudong Chae ◽  
Jae-Young Choi ◽  
...  

The increased interplanar distance between the EGO sheets favored the edge-to-edge than basal plane interaction within the fiber, resulting in high mechanical strength (492 MPa) and increased elongation (6.1%).


Sign in / Sign up

Export Citation Format

Share Document