interplanar distance
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 2155 (1) ◽  
pp. 012013
Author(s):  
A S Dikov ◽  
A S Larionov ◽  
E A Zhakanbayev ◽  
L A Dikova ◽  
A Zh Sanssyzbayeva ◽  
...  

Abstract The paper provides the results of studies of the structural-phase state of tantalum coatings prepared by magnetron deposition. The coatings were deposited on substrates made of titanium nickelide with a shape memory. The NiTi temperature during coating deposition did not exceed 100 °C. The structural-phase state of Ta was determined by X-ray diffraction at different stages of coating formation. It has been shown that at the initial stage of deposition, two-phase coatings (α- and β-Ta) are formed. The synthesis of the coating from Ta leads to the growth of interplanar distance of the B2 austenite phase in the crystallographic direction (100). The growth of interplanar spacing is caused by formation of microstresses during interaction with incident tantalum ions. The lattice parameters of the B19 ‘phase, responsible for appearance of the shape memory effect, do not change during deposition of the tantalum coating.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7033
Author(s):  
Elena N. Popova ◽  
Irina L. Deryagina ◽  
Evgeniya G. Valova-Zaharevskaya ◽  
Maria Letizia Ruello ◽  
Vladimir V. Popov

The study is devoted to heavily drawn multicore Cu–18Nb composites of cylindrical and rectangular shapes. The composites were fabricated by the melt-and-deform method, namely, 600 in situ rods of Cu–18%Nb alloy were assembled in a copper shell and cold-drawn to a diameter of 15.4 mm (e = 10.2) and then rolled into a rectangular shape the size of 3 × 5.8 mm (e = 12.5). The specimens were analyzed from the viewpoints of their microstructure, microhardness, and thermal stability. The methods of SEM, TEM, X-ray analysis, and microhardness measurements were applied. It is demonstrated that, at higher strain, the fiber texture <110>Nb <111>Cu DD (drawing direction), characteristic of this material, becomes sharper. The distortions of niobium lattice can be observed, namely, the {110} Nb interplanar distance is broadened in longitudinal direction of specimens and compacted in transverse sections. The copper matrix lattice is distorted as well, though its distortions are much less pronounced due to its recrystallization. Evolution of microstructure under annealing consists mainly in the coagulation of ribbon-like Nb filaments and in the vanishing of lattice distortions. The structural changes in Nb filaments start at 300–400 °С, then develop actively at 600 °С and cause considerable decrease of strength at 700–800 °С.


2021 ◽  
Vol 19 (10) ◽  
pp. 34-40
Author(s):  
B.Y. Taher ◽  
A.S. Ahmed ◽  
Hassan J. Alatta

In this study, CdO2 (1-X) AlX thin films were prepared by pulsed-laser deposition. The X-ray diffraction patterns reveal that the films were polycrystalline with a cubic structure, and the composition of the material changed from CdO at the target to CdO2 in the deposited thin films. The intensity of the diffraction peak (or the texture factor) decreases with increasing hkl and has a maximum value for the (111) plane, the interplanar distance and diffraction angle has a high deviation from the standard value for the (111) plane and. This deviation is affected by doping concentration and shows its highest deviation at a doping concentration of 0.1 wt.% for the (111) and (200), and the 0.3 and 0.5 wt.% for the (210) and (220) planes, respectively. The crystalline size take a less value at plane has a high texture factor that is (111) plane and decreases with increase the doping concentration.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6905
Author(s):  
Ewa Stodolak-Zych ◽  
Roksana Kurpanik ◽  
Ewa Dzierzkowska ◽  
Marcin Gajek ◽  
Łukasz Zych ◽  
...  

Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.5 µm (for MMT) to 0.8 µm (for MMTG), an increase in the interplanar distance d001 from 12.3 Å (for MMT) to 13.9 Å (for MMTG) and altered clay grain morphology. In the second part of the experiment, the electrospinning process was carried out in which the polymer nonwovens with and without the modifier were prepared directly from dichloromethane (DCM) and N,N-dimethylformamide (DMF). The nanocomposite fibrous membranes containing montmorillonite were prepared from the same polymer solution but after homogenization with the modifier (13 wt.%). The degree of dispersion of the modifier was evaluated by average microarray analysis from observed area (EDS), which was also used to determine the intercalation of montmorillonite with gentamicin sulfate. An increase in the size of the fibers was found for the materials with the presence of the modifier, with the largest diameters measured for PCL_MMT (625 nm), and the smaller ones for PCL_MMTG (578 nm) and PCL_G (512 nm). The dispersion of MMT and MMTG in the PCL fibers was also confirmed by indirect studies such as change in mechanical properties of the nonwovens membrane, where the neat PCL nonwoven was used as a reference material. The addition of the modifier reduced the contact angle of PCL nonwovens (from 120° for PCL to 96° for PCL_G and 98° for PCL_MMTG). An approximately 10% increase in tensile strength of the nonwoven fabric with the addition of MMT compared to the neat PCL nonwoven fabric was also observed. The results of microbiological tests showed antibacterial activity of all obtained materials; however, the inhibition zones were the highest for the materials containing gentamicin sulphate, and the release time of the active substance was significantly extended for the materials with the addition of montmorillonite containing the antibiotic. The results clearly show that the electrospinning technique can be effectively used to obtain nanobiocomposite fibers with the addition of nonintercalated and intercalated montmorillonite with improved strength and increased stiffness compared to materials made only of the polymer fibers, provided that a high filler dispersion in the spinning solution is obtained.


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 221
Author(s):  
Ahmad Umar ◽  
Hasan Algadi ◽  
Rajesh Kumar ◽  
Mohammad Shaheer Akhtar ◽  
Ahmed A. Ibrahim ◽  
...  

Herein, a simple, economical and low temperature synthesis of leaf-shaped CuO nanosheets is reported. As-synthesized CuO was examined through different techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), fourier transform infrared spectroscopic (FTIR) and Raman spectroscopy to ascertain the purity, crystal phase, morphology, vibrational, optical and diffraction features. FESEM and TEM images revealed a thin leaf-like morphology for CuO nanosheets. An interplanar distance of ~0.25 nm corresponding to the (110) diffraction plane of the monoclinic phase of the CuO was revealed from the HRTEM images XRD analysis indicated a monoclinic tenorite crystalline phase of the synthesized CuO nanosheets. The average crystallite size for leaf-shaped CuO nanosheets was found to be 14.28 nm. Furthermore, a chemo-resistive-type gas sensor based on leaf-shaped CuO nanosheets was fabricated to effectively and selectively detect H2S gas. The fabricated sensor showed maximum gas response at an optimized temperature of 300 °C towards 200 ppm H2S gas. The corresponding response and recovery times were 97 s and 100 s, respectively. The leaf-shaped CuO nanosheets-based gas sensor also exhibited excellent selectivity towards H2S gas as compared to other analyte gases including NH3, CH3OH, CH3CH2OH, CO and H2. Finally, we have proposed a gas sensing mechanism based upon the formation of chemo-resistive CuO nanosheets.


2021 ◽  
Vol 53 (3) ◽  
pp. 210305
Author(s):  
Ahmed A Moosa ◽  
Zainab H. Mahdi ◽  
Mohammed A. Mutar

Exfoliated graphite (EG)  was prepared by mixing graphite with HNO3 and KMnO4 at weight ratio 1:2:1 using microwave heating at times 20, 60, 80 and 120 sec. Graphene  oxide (GO) was then prepared using EG as precursor by the modified Hummer’s method. Atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy analyses  showed successful conversion of EG into GO. The XRD results of the GO showed that the maximum interplanar distance (d-spacing) increased from 0.344 to 0.831 nm. The AFM showed a minimum thickness of  0.519 nm for a single layer of GO prepared from EG 80 sec. The XRD examination also showed an increase in the d-spacing between the GO layers after sonication compared to before sonication.


Author(s):  
Mário B S Nunes ◽  
Ana Flávia F Farias ◽  
Eliton S Medeiros ◽  
Juliano E Oliveira ◽  
Ieda M G Santos ◽  
...  

One way to optimize composite mechanical properties is through hybridization with small amounts of reinforcing fillers. Thus, this study investigates the effect of incorporation of 3 wt% of clay (BT) and organoclay (OBT) on the properties of a recycled wood plastic composite (WPC) based on HDPE and 20 wt% of coir fiber compounded with 5 wt% of maleic anhydride-grafted polypropylene (PP-g-MA), as coupling agent, and 5 wt% of Struktol TPW 113, as lubricating agent. Raw materials were characterized by X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Coir fiber was characterized by optical microscopy and TGA. Wood plastic formulations (with clay and organoclay) were prepared in an internal mixer coupled to a torque rheometer operating at 190°C, 60 rpm for 10 min. Then, the mixtures were compression molded. Formulations were characterized by SEM, TGA, DSC, tensile and water absorption tests. FTIR analysis showed the characteristic bands of organophilic clay. XRD showed an increment in the interplanar distance of the clay, after the incorporation of quaternary ammonium salt (distearyl dimethyl ammonium chloride, Praepagen® WB), confirming the organoclay formation. Organophilization decreases the clay hydrophilic character and reduces the water uptake of WPC-BT. Despite the fact that BT incorporation led to WPC nanocomposite with intercalated structure, this WPC-clay composition did not show a significant increase in tensile strength and elongation at break. The poor interfacial adhesion between the raw materials and the polymer matrix, the low aspect ratio provided by coir fibers and also, the partially intercalated structure of composites have contributed to this behavior.


2021 ◽  
Vol 19 (4) ◽  
pp. 77-86
Author(s):  
A.S. Ahmed ◽  
I.H. Kadim ◽  
A.A. Ramadhan

Structural properties of TiO2 thin films play a main role in determine the characteristic of the thin films especially their stability and activity, the total pressure has a great influence in determine the crystallinity of the films and the orientation of the facets of their structure, especially the two facet (101) and (001), the enhancing the structure properties will cause to enhance the application efficiency of TiO2 thin films such as the dissociative adsorption of water and the solar cell. Many researcher interest to prepare the TiO2 thin film under the low range of total pressure (less than to 10 Pa) to avoid the low degree of crystalline and the mixed of two phase anatas and rutile, so in our work tend to prepare TiO2 thin films under a high total pressure (more than 10 Pa) with values (10, 20, 50 and 100) Pa and with (1:1) mixed ratio of Argon and Oxygen gases, the pattern of X-Ray diffraction revealed that the structure was polycrystalline and the phase was anatas. The intensity at 2θ ≈ 25.00°, 37.00°, 53.00° and 55.00° correspond to the diffraction from (101), (004), (105) and (211) planes respectively. The intensity and number of peaks decreased with increased the total pressure, the plane (101) could be considered as a prefential growth plane which take a high texture factor and this would decreased with increased the total pressure, the ratio of texture factor between 001 and 101 will increase with decrease the total pressure, The lattice constant and the interplanar distance displayed a greater deviation compared with the standard value at the lowest total pressure than the decrease observed with increased total pressure.


Author(s):  
Stepan Nebaba

The paper considers the previously developed automated algorithm for determining the interplanar distances of the crystalline structure of a substance from images of transmission electron microscopy (TEM images), and also proposes a modification of the algorithm that allows to increase the automation level of obtaining the result. The question of automation of the process of normalization of images of crystal structures by angles of rotation is considered. Also, an alternative is proposed at the step of image binarization with a given threshold in the form of adaptive binarization with an automatically selected binarization window size. The improved algorithm was tested on a number of publicly available TEM images, and the interplanar distance measurements were compared with the measurements in the specialized software package named Digital Micrograph GMS 1.8. Comparison of the results showed that the proposed improved algorithm determines the distance with sufficient precision and fits within the range of measurement error for the considered images.


Sign in / Sign up

Export Citation Format

Share Document