Direct simulation of glass fiber breakage in simple shear flow considering fiber-fiber interaction

Author(s):  
Toshiki Sasayama ◽  
Masahide Inagaki ◽  
Norikazu Sato
2008 ◽  
Author(s):  
Aaron P. R. Eberle ◽  
Gregorio Velez ◽  
Donald Baird ◽  
Peter Wapperom ◽  
Kevin Ortman ◽  
...  

2010 ◽  
Vol 165 (3-4) ◽  
pp. 110-119 ◽  
Author(s):  
Aaron P.R. Eberle ◽  
Gregorio M. Vélez-García ◽  
Donald G. Baird ◽  
Peter Wapperom

2020 ◽  
Vol 4 (3) ◽  
pp. 134
Author(s):  
Tzu-Chuan Chang ◽  
Abrahán Bechara Senior ◽  
Hakan Celik ◽  
Dave Brands ◽  
Angel Yanev ◽  
...  

This study aims to use particle level simulation to simulate the breakage behavior of glass fibers subjected to simple shear flow. Each fiber is represented as a chain of rods that experience hydrodynamic, interaction, and elastic effects. In order to validate the approach of the model, the simulation results were compared to simple shear flow experiments conducted in a Couette Rheometer. The excluded volume force constants and critical fiber breakage curvature were tuned in the simulation to gain a better understanding of the system. Relaxation of the fiber clusters and a failure probability theory were introduced into the model to solve the fiber entanglement and thus, better fit the experimental behavior. The model showed agreement with the prediction on fiber length reduction in both number average length and weight average length. In addition, the simulation had a similar trend of breakage distribution compared to a loop test using glass fibers.


Author(s):  
Tobias Merkel ◽  
Julius Henne ◽  
Lena Hecht ◽  
Volker Gräf ◽  
Elke Walz ◽  
...  

2006 ◽  
Vol 91 (9) ◽  
pp. 3415-3424 ◽  
Author(s):  
Juan Jaspe ◽  
Stephen J. Hagen

2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Sign in / Sign up

Export Citation Format

Share Document