Dynamic Behaviour of Bio-inspired Heterocyclic Aramid Fibre-reinforced Laminates Subjected to Low-velocity Drop-weight Impact

Author(s):  
Caizheng Wang ◽  
Dandan Su ◽  
Zhifeng Xie ◽  
Hongxu Wang ◽  
Paul J. Hazell ◽  
...  
2021 ◽  
Author(s):  
Betül Kafkaslıoğlu Yıldız ◽  
Murat Büyük ◽  
Yahya Kemal Tür

Abstract 1 vol% Ni particulate Al2O3 matrix nanocomposites prepared by the heterogeneous precipitation method with ZrO2 (5 vol%) or Cr2O3 (1 vol%) additives were subjected to the low energy drop weight impact tests to compare the behavior of the compositions under low energy impact and to investigate the damage mechanisms. The pure Al2O3, Al2O3/Ni, Al2O3/ZrO2, and Al2O3/Cr2O3 compositions with the same additive ratios were also produced to make the comparison systematically. Also, the Vickers hardness measurements were carried out and a significant increase in hardness was attained for both Al2O3/Ni + ZrO2 and Al2O3/Ni + Cr2O3. The average hardness value around 24.8 ± 1.0 GPa was measured for Al2O3/Ni + ZrO2 and Al2O3/Ni + Cr2O3 which means ∼ 15% improvement compared to the pure Al2O3. Between all the compositions, the maximum force (Fmax) value was obtained for Al2O3/Ni + ZrO2 for 12 J impact energy level (26617 N) according to the low energy drop weight impact test results. Tensile radial crack network formation, cone formation, fracture and crushing of the cone structure were observed as damage mechanisms for all the compositions. The volume of conical frustum structure was evaluated for each composition and the effect of microstructure on possible ballistic performance was also discussed.


2015 ◽  
Vol 97 ◽  
pp. 279-295 ◽  
Author(s):  
Rui Wang ◽  
Lin-Hai Han ◽  
Xiao-Ling Zhao ◽  
Kim J.R. Rasmussen

2021 ◽  
pp. 002199832098760
Author(s):  
Muhammad Umair ◽  
Muzzamal Hussain ◽  
Zaheer Abbas ◽  
Khubab Shaker ◽  
Yasir Nawab

Improvement in mechanical properties of natural fiber reinforced polymeric composites remain a key focus of researchers in the recent years. However, few studies have been carried out for the improvement in low velocity impact properties of such composites. In the present article, the results on the effect of weave structure of reinforcing fabric and addition of glass microsphere fillers (GMS) on the drop weight impact properties of Hemp/Green epoxy composite samples are reported for the first time. Hemp woven fabrics having four different weave structures (matt, satin, hybrid weave A and hybrid weave B) were developed in an inhouse lab. Four layered composites containing glass microspheres (0%, 2%, 3.5% and 5% on the weight of resin) were fabricated using vacuum bag molding. Drop weight impact testing was performed at 10 J impact energy, and force-displacement, force-time and energy absorbed-time behaviors were recorded and analyzed. The results were statistically analyzed as well. It was found that both weave design and glass microspheres show a significant effect on impact properties of the developed composites. The composite sample reinforced with satin woven reinforcement exhibited maximum value of impact force, whereas composite samples containing 5% glass microspheres display more resilience and stiffness as compared to other structures.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Umar Farooq ◽  
Peter Myler

AbstractThis work is mainly concerned with the nondestructive post-impact damage evaluation of carbon fibre reinforced laminated composite panels subject to low velocity drop-weight impact by flat and round nose impactors. Quasi-isotropic laminates consisting of eight-, sixteen-, and twenty-four plies were impacted by flat and round nose impactors at different velocity levels. Load-time history data were recorded and plotted to correlate loaddrop as damage level to the impactor nose profiles. Test produced data, non-destructive damage detection techniques: visual, ultrasonic, and eddy- current, and computer simulations were utilised to identify and quantify status of the impact induced damage. To evaluate damage in relatively thick laminates (consisting of 24-Ply), the damage ratios and deflection quantities were correlated to the corresponding impactor nose profiles. Damage induced by the flat nose impactor to thick laminates was compared against the data produced by the round nose impactor. Results show that relatively thin laminates were largely affected by the impactor nose. Reasonable difference was observed in damage caused by flat and round impactor nose profiles to thick laminates impacted at relatively higher velocity impacts. Resultswere compared and validated against simulation produced data.


Sign in / Sign up

Export Citation Format

Share Document