Wave propagation and transient response of functionally graded material circular plates under a point impact load

2011 ◽  
Vol 42 (4) ◽  
pp. 657-665 ◽  
Author(s):  
Dan Sun ◽  
Song-Nan Luo
2014 ◽  
Vol 543-547 ◽  
pp. 7-11
Author(s):  
X.D. Yang ◽  
J.G. Yu

In this article, circumferential SH wave propagation in functionally graded material (FGM) hollow cylinders is investigated. Based on the Kelvin-Voigt viscoelastic theory, the controlling differential equations in terms of displacements are deduced. By the Legendre polynomial method, the asymptotic solutions are obtained. Through the numerical results, the influences of gradient profile and the influences of the radius to thickness ratio on dispersion and attenuation are illustrated. The work is crucial for guided ultrasonic nondestructive evaluation for graded hollow cylinders.


2019 ◽  
Vol 39 (4) ◽  
pp. 1002-1023
Author(s):  
Xu Liang ◽  
Yu Deng ◽  
Xue Jiang ◽  
Zeng Cao ◽  
Yongdu Ruan ◽  
...  

In this paper, a 3D semi-analytical method is proposed by introducing the Durbin’s Laplace transform, as well as its numerical inversion method, state space approach and differential quadrature method to analyse the transient behaviour of functionally graded material cylindrical panels. Moreover, to investigate the effectiveness of the proposed semi-analytical solution, four boundary conditions are used to undertake the analyses. Comparing the proposed approach with other theoretical methods from the literatures, we see better agreements in the natural frequencies. Besides, the semi-analytical solution acquires nearly the same transient response as those obtained by ANSYS. Convergence studies indicate that the proposed method has a quick convergence rate with growing sample point numbers along the length direction, so do layer numbers increase along the radial direction. The effects of thickness/outer radius ratio, length/outer radius ratio and functionally graded indexes are also studied. When carbon nanotube is added to functionally graded material cylindrical panel, the composite structures have been reinforced greatly. The proposed 3D semi-analytical method has high accuracy for the analysis of composite structures. This study can serve as a foundation for solving more complicated environments such as fluid–structure interaction of flexible pipe or thermal effect analysis of functionally graded material in aerospace field.


Sign in / Sign up

Export Citation Format

Share Document