scholarly journals Fast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: Application to SMC

2018 ◽  
Vol 139 ◽  
pp. 155-162 ◽  
Author(s):  
M.A. Laribi ◽  
S. Tamboura ◽  
J. Fitoussi ◽  
R. Tié Bi ◽  
A. Tcharkhtchi ◽  
...  
2015 ◽  
Vol 825-826 ◽  
pp. 960-967 ◽  
Author(s):  
Julia Brunbauer ◽  
Gerald Pinter

The fatigue-life prediction of continuously fiber reinforced carbon/epoxy composites is of importance in order to support or partially replace the extensive amount of mechanical testing necessary for safe structural applications. However, the factors influencing the damage behaviour and the degradation of mechanical properties under real applications are numerous. To be able to predict fatigue-life of composites in an application-oriented way in the future, two novel approaches towards fatigue-life predictions have been studied by the authors in the last years. In this work, the promising approaches based on fatigue stiffness and fatigue strength and their potentials are introduced briefly.


Author(s):  
H. El Kadi ◽  
I. M. Deiab ◽  
M. Al-Assadi

Polynomial classifiers (PC) have already been shown to produce good fatigue life prediction for a specific composite under a variety of fatigue loading conditions. In this study, polynomial classifiers are used to predict the fatigue life in other composite materials not used in training. Different composite materials with a variety of fiber orientation angles are considered. The predictions obtained using PC are compared with the experimental results and are shown to be promising.


Author(s):  
Natalie Rauter

AbstractIn this study a modeling approach for short fiber-reinforced composites is presented which allows one to consider information from the microstructure of the compound while modeling on the component level. The proposed technique is based on the determination of correlation functions by the moving window method. Using these correlation functions random fields are generated by the Karhunen–Loève expansion. Linear elastic numerical simulations are conducted on the mesoscale and component level based on the probabilistic characteristics of the microstructure derived from a two-dimensional micrograph. The experimental validation by nanoindentation on the mesoscale shows good conformity with the numerical simulations. For the numerical modeling on the component level the comparison of experimentally obtained Young’s modulus by tensile tests with numerical simulations indicate that the presented approach requires three-dimensional information of the probabilistic characteristics of the microstructure. Using this information not only the overall material properties are approximated sufficiently, but also the local distribution of the material properties shows the same trend as the results of conducted tensile tests.


1999 ◽  
Vol 66 (3) ◽  
pp. 709-713 ◽  
Author(s):  
R. S. Feltman ◽  
M. H. Santare

A model is presented to analyze the effect of fiber fracture on the anisotropic elastic properties of short-fiber reinforced composite materials. The effective moduli of the material are modeled using a self-consistent scheme which includes the calculated energy dissipated through the opening of a crack in an arbitrarily oriented elliptical inclusion. The model is an extension of previous works which have modeled isotropic properties of short-fiber reinforced composites with fiber breakage and anisotropic properties of monolithic materials with microcracks. Two-dimensional planar composite systems are considered. The model allows for the calculation of moduli under varying degrees of fiber alignment and damage orientation. In the results, both aligned fiber systems and randomly oriented fiber systems with damage-induced anisotropy are examined.


2017 ◽  
Vol 24 (5) ◽  
pp. 765-772 ◽  
Author(s):  
Dawei Jia ◽  
Huiji Shi ◽  
Lei Cheng

AbstractA study of the micromechanical behavior to predict the overall response of short fiber-reinforced composites under cyclic mechanical and thermal loading is presented. The instantaneous average over a “representative volume” of the material is considered. The influence of the short fiber’s aspect ratio, volume fraction, and spatial orientation has been investigated. The linear combined hardening model is used to describe the cyclic hardening effects in the case of metal matrix. A numerical procedure is used to predict the response of composites under mechanical and thermal conditions. The results of the numerical procedure have been compared to the results of three different models and to published experimental data.


Sign in / Sign up

Export Citation Format

Share Document