Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material

2019 ◽  
Vol 178 ◽  
pp. 107507 ◽  
Author(s):  
Hongsheng Liang ◽  
Jiaolong Liu ◽  
Yi Zhang ◽  
Lei Luo ◽  
Hongjing Wu
2004 ◽  
Vol 80 (3) ◽  
pp. 177-178 ◽  
Author(s):  
Hitoshi HOJO ◽  
Kazuhiro AKIMOTO ◽  
Atsushi MASE

RSC Advances ◽  
2019 ◽  
Vol 9 (41) ◽  
pp. 23843-23855 ◽  
Author(s):  
Chaozhi Wang ◽  
Jiang Li ◽  
Shaoyun Guo

A broadband electromagnetic wave (EW) absorbing material should possess both wider effective absorption bandwidth and lower minimum reflection loss, depending on good impedance matching between the absorber and air and strong attenuation of EW.


2008 ◽  
Vol 17 (03) ◽  
pp. 255-264 ◽  
Author(s):  
ARAFA H. ALY ◽  
SANG-WAN RYU ◽  
CHIEN-JANG WU

We theoretically studied electromagnetic wave propagation in a one-dimensional metal/dielectric photonic crystal (1D MDPC) consisting of alternating metallic and dielectric materials by using the transfer matrix method. We performed numerical analyses to investigate the propagation characteristics of a 1D MDPC. We discuss the details of the calculated results in terms of the electron density, the thickness of the metallic layer, different kinds of metals, and the plasma frequency.


2010 ◽  
Vol 75 ◽  
pp. 215-223
Author(s):  
Andrey Nikolayevich Lagarkov ◽  
Vladimir Nikolayevich Kisel ◽  
Vladimir Nikolayevich Semenenko

The use of metamaterial for design of radar absorbing material (RAM) is discussed. The typical features of the frequency dependencies of , , ,  of composites manufactured of different types of resonant inclusions are given as an example. The RAM characteristics obtained by the use of the composites are given. It is shown that it is possible to use for RAM design the metamaterials with both the positive values of ,  and negative ones. Making use of the frequency band with negative  and  it is possible to create a RAM with low reflection coefficient in a wide range of the angles of electromagnetic wave incidence.


Sign in / Sign up

Export Citation Format

Share Document