Effects of environmental conditions on the lap shear strength of resistance-welded carbon fibre/thermoplastic composite joints

2020 ◽  
Vol 198 ◽  
pp. 108239 ◽  
Author(s):  
Vincent Rohart ◽  
Louis Laberge Lebel ◽  
Martine Dubé
2020 ◽  
Vol 39 (21-22) ◽  
pp. 837-851 ◽  
Author(s):  
Vincent Rohart ◽  
Louis L Lebel ◽  
Martine Dubé

This study evaluates the effects of freeze/thaw cycles on the mechanical performance and failure mode of resistance-welded carbon fibre/polyphenylene sulphide composite joints. Dry and moisture-saturated joints are subjected to 1000 temperature cycles varying between –40°C and 82°C. A silane coating is applied on the stainless steel mesh heating element to improve its adhesion with the polyphenylene sulphide polymer. Results show the limited impact that freeze/thaw cycles have on the lap shear strength of joints welded without any coating on the heating element. The silane coating improves the lap shear strength by 32% when no freeze/thaw cycles are applied to the joints. This improvement of 32% reduces when joints are subjected to freeze/thaw cycles but the mechanical performance remains superior to that of joints welded using uncoated heating element. Fracture surfaces show that fibre/matrix and stainless steel/matrix interfaces are both affected by the environmental conditions although it does not translate into lower lap shear strength.


2021 ◽  
pp. 096739112098651
Author(s):  
Saeedeh Saadatyar ◽  
Mohammad Hosain Beheshty ◽  
Razi Sahraeian

Unidirectional carbon fiber-reinforced epoxy (UCFRE) is suffering from weak transverse mechanical properties and through-thickness properties. The effect of different amount (0.1, 0.3 and 0.5 phr which is proportional to 0.09, 0.27 and 0.46 wt%, respectively) of multiwall carbon nanotube (MWCNT), on transverse tensile properties, flexural strength, fracture toughness in transverse and longitudinal fiber directions, interlaminar shear strength and lap shear strength of UCFRE has been investigated. Dicyandiamide was used as a thermal curing agent of epoxy resin. MWCNT was dispersed in the epoxy resin by ultrasonic instrument and their dispersion state was investigated by scanning electron microscopy (SEM). The curing behavior of epoxy resin and its nanocomposites was assessed by differential scanning calorimetry. Results show that transverse tensile strength, modulus and strain-at-break were increased by 28.5%, 25% and 14%, respectively by adding 0.1 phr of MWCNT. Longitudinal flexural properties of UCFRE was not changed by adding different amount of MWCNT. Although longitudinal flexural strength was increased by 5% by adding 0.1 phr of MWCNT. Fracture toughness in transverse and longitudinal fiber directions was increased by 39% and 9%, respectively at 0.3 phr of MWCNT. Results also show that interlaminar shear strength and lap shear strength were increased at 0.3 phr of MWCNT by 8% and 5%, respectively. These increases in mechanical properties were due to the good adhesion of fibers to the matrix, interlocking and toughening action of MWCNT as revealed by SEM.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Daniel Bohling ◽  
Andrzej Cwirzen ◽  
Karin Habermehl-Cwirzen

Full utilization of mechanical properties of glass fiber fabric-reinforced cement composites is very limited due to a low bond strength between fibers and the binder matrix. An experimental setup was developed and evaluated to correlate the mortar penetration depth with several key parameters. The studied parameters included fresh mortar properties, compressive and flexural strengths of mortar, the fabric/mortar bond strength, fabric pullout strength, and a single-lap shear strength. Results showed that an average penetration of mortar did not exceed 100 µm even at a higher water-to-binder ratio. The maximum particle size of the used fillers should be below an average spacing of single glass fibers, which in this case was less than 20 µm to avoid the sieving effect, preventing effective penetration. The pullout strength was strongly affected by the penetration depth, while the single-lap shear strength was also additionally affected by the mechanical properties of the mortar.


Sign in / Sign up

Export Citation Format

Share Document