Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices

2020 ◽  
Vol 199 ◽  
pp. 108308
Author(s):  
Xiang Lu ◽  
Yongfeng Zheng ◽  
Jinglei Yang ◽  
Jinping Qu
Nanoscale ◽  
2021 ◽  
Author(s):  
Bing Zhou ◽  
Qingtao Li ◽  
Penghui Xu ◽  
Yuezhan Feng ◽  
Jianmin Ma ◽  
...  

Flexible cellulose-based conductive films reveal the high potential in electromagnetic interference (EMI) shielding and thermal management applications. However, the high contact electrical/thermal resistance in these films is still one of...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting Wang ◽  
Wei-Wei Kong ◽  
Wan-Cheng Yu ◽  
Jie-Feng Gao ◽  
Kun Dai ◽  
...  

Highlights The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment. Abstract It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels–Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.


Carbon ◽  
2008 ◽  
Vol 46 (9) ◽  
pp. 1256-1258 ◽  
Author(s):  
Bunshi Fugetsu ◽  
Eiichi Sano ◽  
Masaki Sunada ◽  
Yuzuru Sambongi ◽  
Takao Shibuya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document