Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating

2017 ◽  
Vol 138 ◽  
pp. 134-143 ◽  
Author(s):  
U. Staudinger ◽  
P. Thoma ◽  
F. Lüttich ◽  
A. Janke ◽  
O. Kobsch ◽  
...  
2021 ◽  
pp. 130204
Author(s):  
Daniel E. Camacho ◽  
Armando Encinas

2021 ◽  
pp. 11-21
Author(s):  
L.V. Solovyanchik ◽  
◽  
S.V. Kondrashov ◽  

Presents a review of the scientific literature on various methods for producing electrically conductive polymer materials and coatings. The prospects of using carbon nanotubes (CNT) to impart high electrical properties to the surface of materials are shown. The mechanism of formation of the structured surface of polymer materials with CNT is described. It is shown that the use of CNT is a promising way to impart electrically conductive and superhydrophobic properties to the surface.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
P. Wilson ◽  
C. Lekakou ◽  
J. F. Watts

A laboratory-scale inkjet printing system was designed for printing polymeric inks with the focus on PEDOT:PSS, a transparent, electrically conductive polymer. PEDOT:PSS inks with 0 and 1 wt. % Surfynol were tested rheologically in elongational and shear flows. A process model is presented and validated for the prediction of flow boundary after the ink exits the nozzle, including drop formation. Process optimization involved establishing a process window related to the voltage waveform, substrate temperature, speed and printed line-overlap, aiming at avoiding satellite drops, “coffee cup” rings, the Rayleigh instability, “stacked printed lines,” and discontinuities in the printed lines or films.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 472 ◽  
Author(s):  
Doeun Kim ◽  
Arun Sasidharanpillai ◽  
Ki Hoon Yun ◽  
Younki Lee ◽  
Dong-Jin Yun ◽  
...  

Robust superhydrophobic surfaces are fabricated on different substrates by a scalable spray coating process. The developed superhydrophobic surface consists of thin layers of surface functionalized silica nanoparticle (SiO2) bound to the substrate by acrylate-polyurethane (PU) binder. The influence of the SiO2/PU ratio on the superhydrophobicity, and the robustness of the developed surface, is systematically analyzed. The optimized SiO2/PU ratio for prepared superhydrophobic surfaces is obtained between 0.9 and 1.2. The mechanism which yields superhydrophobicity to the surface is deduced for the first time with the help of scanning electron microscopy and profilometer. The effect of mechanical abrasion on the surface roughness and superhydrophobicity are analyzed by using profilometer and contact angle measurement, respectively. Finally, it is concluded that the binder plays a key role in controlling the surface roughness and superhydrophobicity through the capillary mechanism. Additionally, the reason for the reduction in performance is also discussed with respect to the morphology variation.


Author(s):  
Farah Badrul ◽  
Khairul Anwar Abdul Halim ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Firdaus Omar ◽  
Azlin Fazlina Osman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document