Forced harmonic response of sandwich plates with viscoelastic core using reduced-order model

2013 ◽  
Vol 105 ◽  
pp. 311-318 ◽  
Author(s):  
M. Bilasse ◽  
D.C.D. Oguamanam
Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced order models in which the modes of the mistuned system are represented in terms of a sub-set of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees of freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


1999 ◽  
Vol 123 (4) ◽  
pp. 893-900 ◽  
Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced-order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced-order models in which the modes of the mistuned system are represented in terms of a subset of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees-of-freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


Sign in / Sign up

Export Citation Format

Share Document