Modeling and simulation of static and dynamic behavior in composite sandwich plates with hourglass lattice cores based on reduced-order model

2022 ◽  
pp. 115161
Author(s):  
Shi Jie ◽  
Zhong Yifeng ◽  
Liu Rong ◽  
Shi Zheng
2019 ◽  
Vol 57 ◽  
pp. 117-135 ◽  
Author(s):  
Aicha Draoui ◽  
Mohamed Zidour ◽  
Abdelouahed Tounsi ◽  
Belkacem Adim

Based on the first order shear deformation plate theory (FSDT) in the present studie, static and dynamic behavior of carbon nanotube-reinforced composite sandwich plates has been analysed. Two types of sandwich plates, namely, the sandwich with face sheet reinforced and homogeneous core and the sandwich with homogeneous face sheet and reinforced core are considered. The face sheet or core plates are reinforced by single-walled carbon nanotubes with two types of distributions of uniaxially aligned reinforcement material which uniformly (UD-CNT) and functionally graded (FG-CNT). The analytical equations are derived and the exact solutions for bending and vibration analyses of such type’s plates are obtained. The mathematical models provided and the present solutions are numerically validated by comparison with some available results in the literature. Influence of Various parameters of reinforced sandwich plates such as aspect ratios, volume fraction, types of reinforcement and plate thickness on the bending and vibration analyses of carbon nanotube-reinforced composite sandwich plates are studied and discussed. The findings suggest that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.


Author(s):  
Dumitru I. Caruntu ◽  
Roberto J. Zapata ◽  
Martin W. Knecht

This paper deals with electrostatically actuated nanoelectromechanical (NEMS) cantilever resonators. The dynamic behavior is described by a second order partial differential equation. The NEMS cantilever resonator device is actuatedby an AC voltage resulting in a vibrating motion of the cantilever. At nano scale, squeeze film damping, Casimir force, and fringing effects significantly influence the dynamic behavior or the cantilever beam. The second order partial differential equation is solved using the Reduced Order Model (ROM) method. The resulting time dependent second order differential equations system is then transformed into a first order differential equations system. Numerical simulations were conducted using Matlab solver ode15s.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


Sign in / Sign up

Export Citation Format

Share Document