scholarly journals Experimental investigation of unbound nodes identification for metallic sandwich panels with truss core

2017 ◽  
Vol 163 ◽  
pp. 248-256 ◽  
Author(s):  
Lingling Lu ◽  
Hongwei Song ◽  
Chenguang Huang
AIAA Journal ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 948-957 ◽  
Author(s):  
Wu Yuan ◽  
Hongwei Song ◽  
Xi Wang ◽  
Chenguang Huang

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Sensen Li ◽  
Bei Zhang ◽  
Dapeng Yang ◽  
He Wang ◽  
Yang Liu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 22 (5) ◽  
pp. 1612-1634 ◽  
Author(s):  
J Jelovica ◽  
J Romanoff

Modeling a periodic structure as a homogeneous continuum allows for an effective structural analysis. This approach represents a sandwich panel as a two-dimensional plate of equivalent stiffness. Known as the equivalent single-layer, the method is used here to analyze bifurcation buckling of three types of sandwich panels with unidirectional stiffeners in the core: truss-core, web-core and corrugated-core panels made of an isotropic material. The transverse shear stiffnesses of these panels can differ by several orders of magnitude, which cause incorrect buckling analysis when using the equivalent single-layer model with the first-order shear deformation theory. Analytical solution of the problem predicts critical buckling loads that feature infinite number of half-waves in the direction perpendicular to the stiffeners. Finite element model also predicts buckling modes that have non-physical, saw-tooth shape with infinite curvature at nodes. However, such unrealistic behavior is not observed when using detailed three-dimensional finite element models. The error in the prediction of the critical buckling load is up to 85% for the cases considered here. The correction of the equivalent single-layer model is proposed by modeling the thick-faces effect to ensure finite curvature. This is performed in the finite element setting by introducing an additional plate with tied deflections to the equivalent single-layer plate. The extra plate is represented with bending and transverse shear stiffness of the face plates. As a result, global buckling is predicted accurately. Guidelines are proposed to identify the sandwich panels where ordinary model is incorrect. Truss-core and web-core sandwich panels need the correction. Corrugated-core panels without a gap between plates in the core have smaller shear orthotropy and do not need the correction. Modeling the thick-faces effect ensures correct results for all cases considered in this study, and thus one should resort to this approach in case of uncertainty whether the ordinary equivalent single-layer model is valid.


2019 ◽  
Vol 275 ◽  
pp. 02018
Author(s):  
Jing Zhang ◽  
Xiamin Hu ◽  
Wan Hong ◽  
Bing Zhang ◽  
Chengli Zhang

This paper presents an experimental investigation of bending performance of composite sandwich panels with new mixed core, sandwich panels were tested by four-point bending test. Parametric study was conducted to investigate the influence of different core materials on the failure mode, ultimate bearing capacity, stiffness and ductility of composite sandwich panels. The results of the experimental investigation showed that the mixed core can change the failure mode of sandwich panels. The failure mode of wooden panels is characterized by tensile failure of bottom wood, and the failure mode of composite sandwich panels with wood core is that the surface layer and core are stripped and the webs are damaged by shear, while the failure mode of composite sandwich panels with wood and polyurethane foam mixed core is the shear failure of the web. Composite sandwich panels with GFRP-wood-polyurethane foam core have better bending performance and can effectively reduce the weight of panels.


2020 ◽  
Vol 235 ◽  
pp. 111796 ◽  
Author(s):  
Tianyu Zhou ◽  
Yuansheng Cheng ◽  
Yanjie Zhao ◽  
Lunping Zhang ◽  
Haikun Wang ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelmadjid Si Salem ◽  
Fatma Taouche-Kkheloui ◽  
Kamal Ait Tahar

PurposeThe present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as skins.Design/methodology/approachThe experimental investigation includes two main steps, characterization tests were firstly carried out in order to identify the laws behavior of the constitutive raw materials. The second one investigates 42 sandwich panels tested under three-points bending and buckling according to standard norms.FindingsThe emphasized test results in terms of bearing capacity; buckling strength, ductility, and failure mechanisms confirm that the overall and observed behavior of tested eco-friendly panels was in general satisfactory compared with experimental values reported in the literature. Indeed, the failure modes under bending and buckling conditions were summarized as shear/crimping failure of the sawdust-based mortar core without debonding of the core–skins interface.Originality/valueThe paper provides original information about the development of novel sandwich panels with a bio-based core and polymer skins for construction usage as interior partitioning walls.


2020 ◽  
Vol 7 ◽  
Author(s):  
Lingling Lu ◽  
Yabo Wang ◽  
Jianquan Bi ◽  
Cheng Liu ◽  
Hongwei Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document