scholarly journals Experimental Investigation on Thermal Buckling Behavior of Truss-Core Sandwich Panels

AIAA Journal ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 948-957 ◽  
Author(s):  
Wu Yuan ◽  
Hongwei Song ◽  
Xi Wang ◽  
Chenguang Huang
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelmadjid Si Salem ◽  
Fatma Taouche-Kkheloui ◽  
Kamal Ait Tahar

PurposeThe present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as skins.Design/methodology/approachThe experimental investigation includes two main steps, characterization tests were firstly carried out in order to identify the laws behavior of the constitutive raw materials. The second one investigates 42 sandwich panels tested under three-points bending and buckling according to standard norms.FindingsThe emphasized test results in terms of bearing capacity; buckling strength, ductility, and failure mechanisms confirm that the overall and observed behavior of tested eco-friendly panels was in general satisfactory compared with experimental values reported in the literature. Indeed, the failure modes under bending and buckling conditions were summarized as shear/crimping failure of the sawdust-based mortar core without debonding of the core–skins interface.Originality/valueThe paper provides original information about the development of novel sandwich panels with a bio-based core and polymer skins for construction usage as interior partitioning walls.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Sensen Li ◽  
Bei Zhang ◽  
Dapeng Yang ◽  
He Wang ◽  
Yang Liu ◽  
...  
Keyword(s):  

1986 ◽  
Vol 108 (2) ◽  
pp. 131-137
Author(s):  
D. Moulin

This paper presents a simplified method to analyze the buckling of thin structures like those of Liquid Metal Fast Breeder Reactors (LMFBR). The method is very similar to those used for the buckling of beams and columns with initial geometric imperfections, buckling in the plastic region. Special attention is paid to the strain hardening of material involved and to possible unstable post-buckling behavior. The analytical method uses elastic calculations and diagrams that account for various initial geometric defects. An application of the method is given. A comparison is made with an experimental investigation concerning a representative LMFBR component.


Fire Research ◽  
2016 ◽  
Author(s):  
Hélder D. Craveiro ◽  
João Paulo C. Rodrigues ◽  
Luís M. Laím

Cold-formed steel (CFS) profiles with a wide range of cross-section shapes are commonly used in building construction industry. Nowadays several cross-sections can be built using the available standard single sections (C, U, Σ, etc.), namely open built-up and closed built-up cross-sections. This paper reports an extensive experimental investigation on the behavior of single and built-up cold-formed steel columns at both ambient and simulated fire conditions considering the effect of restraint to thermal elongation. The buckling behavior, ultimate loads and failure modes, of different types of CFS columns at both ambient and simulated fire conditions with restraint to thermal elongation, are presented and compared. Regarding the buckling tests at ambient temperature it was observed that the use of built-up cross-sections ensures significantly higher values of buckling loads. Especially for the built-up cross-sections the failure modes were characterized by the interaction of individual buckling modes, namely flexural about the minor axis, distortional and local buckling. Regarding the fire tests, it is clear that the same levels of restraint used in the experimental investigation induce different rates in the generated restraining forces due to thermal elongation of the columns. Another conclusion that can be drawn from the results is that by increasing the level of restraint to thermal elongation the failure of the columns is controlled by the generated restraining forces, whereas for lower levels of restraint the temperature plays a more important role. Hence, higher levels of imposed restraint to thermal elongation will lead to higher values of generated restraining forces and eventually to lower values of critical temperature and time.


2018 ◽  
Vol 22 (5) ◽  
pp. 1612-1634 ◽  
Author(s):  
J Jelovica ◽  
J Romanoff

Modeling a periodic structure as a homogeneous continuum allows for an effective structural analysis. This approach represents a sandwich panel as a two-dimensional plate of equivalent stiffness. Known as the equivalent single-layer, the method is used here to analyze bifurcation buckling of three types of sandwich panels with unidirectional stiffeners in the core: truss-core, web-core and corrugated-core panels made of an isotropic material. The transverse shear stiffnesses of these panels can differ by several orders of magnitude, which cause incorrect buckling analysis when using the equivalent single-layer model with the first-order shear deformation theory. Analytical solution of the problem predicts critical buckling loads that feature infinite number of half-waves in the direction perpendicular to the stiffeners. Finite element model also predicts buckling modes that have non-physical, saw-tooth shape with infinite curvature at nodes. However, such unrealistic behavior is not observed when using detailed three-dimensional finite element models. The error in the prediction of the critical buckling load is up to 85% for the cases considered here. The correction of the equivalent single-layer model is proposed by modeling the thick-faces effect to ensure finite curvature. This is performed in the finite element setting by introducing an additional plate with tied deflections to the equivalent single-layer plate. The extra plate is represented with bending and transverse shear stiffness of the face plates. As a result, global buckling is predicted accurately. Guidelines are proposed to identify the sandwich panels where ordinary model is incorrect. Truss-core and web-core sandwich panels need the correction. Corrugated-core panels without a gap between plates in the core have smaller shear orthotropy and do not need the correction. Modeling the thick-faces effect ensures correct results for all cases considered in this study, and thus one should resort to this approach in case of uncertainty whether the ordinary equivalent single-layer model is valid.


Sign in / Sign up

Export Citation Format

Share Document