Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory

2018 ◽  
Vol 186 ◽  
pp. 39-49 ◽  
Author(s):  
Liangliang Chu ◽  
Guansuo Dui ◽  
Chengjian Ju
Author(s):  
Vahid Movahedfar ◽  
Mohammad M Kheirikhah ◽  
Younes Mohammadi ◽  
Farzad Ebrahimi

Based on modified strain gradient theory, nonlinear vibration analysis of a functionally graded piezoelectric doubly curved microshell in thermal environment has been performed in this research. Three scale parameters have been included in the modeling of thin doubly curved microshell in order to capture micro-size effects. Graded material properties between the top and bottom surfaces of functionally graded piezoelectric doubly curved microshell have been considered via incorporating power-law model. It is also assumed that the microshell is exposed to a temperature field of uniform type and the material properties are temperature-dependent. By analytically solving the governing equations based on the harmonic balance method, the closed form of nonlinear vibration frequency has been achieved. Obtained results indicate the relevance of calculated frequencies to three scale parameters, material gradation, electrical voltage, curvature radius, and temperature changes.


2019 ◽  
Vol 30 (4) ◽  
pp. 593-605 ◽  
Author(s):  
Mohammad Hosseini ◽  
Reza Bahaadini ◽  
Zahra Khalili-Parizi

This investigation aims to explore the non-conservative instability of a functionally graded material micro-beam subjected to a subtangential force. The functionally graded material micro-beam is integrated with piezoelectric layers on the lower and upper surfaces. To take size effect into account, the mathematical derivations are expanded in terms of three length scale parameters using the modified strain gradient theory in conjunction with the Euler–Bernoulli beam model. However, the modified strain gradient theory includes modified couple stress theory and classical theory as special cases. Applying extended Hamilton’s principle and Galerkin method, the governing equation and corresponding boundary conditions are obtained and then solved numerically by the eigenvalue analysis, respectively. The results illustrated effects of non-conservative parameter, length scale parameter, different material gradient index, and various values of piezoelectric voltage on the natural frequencies, flutter and divergence instabilities of a cantilever functionally graded material micro-beam. It is found that both the material gradient index and applied piezoelectric voltage have significant influence on the vibrational behaviors, divergence and flutter instability regions. Furthermore, a comparison between the various micro-beam theories on the basis of modified couple stress theory, modified strain gradient theory, and classical theory are presented.


2019 ◽  
Vol 40 (12) ◽  
pp. 1723-1740 ◽  
Author(s):  
Z. Sharifi ◽  
R. Khordad ◽  
A. Gharaati ◽  
G. Forozani

AbstractIn this paper, we analytically study vibration of functionally graded piezoelectric (FGP) nanoplates based on the nonlocal strain gradient theory. The top and bottom surfaces of the nanoplate are made of PZT-5H and PZT-4, respectively. We employ Hamilton’s principle and derive the governing differential equations. Then, we use Navier’s solution to obtain the natural frequencies of the FGP nanoplate. In the first step, we compare our results with the obtained results for the piezoelectric nanoplates in the previous studies. In the second step, we neglect the piezoelectric effect and compare our results with those obtained for the functionally graded (FG) nanoplates. Finally, the effects of the FG power index, the nonlocal parameter, the aspect ratio, and the side-tothickness ratio, and the nanoplate shape on natural frequencies are investigated.


Sign in / Sign up

Export Citation Format

Share Document