A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading

2018 ◽  
Vol 204 ◽  
pp. 620-633 ◽  
Author(s):  
Bin Han ◽  
Wei-Wei Hui ◽  
Qian-Cheng Zhang ◽  
Zhen-Yu Zhao ◽  
Feng Jin ◽  
...  
2013 ◽  
Vol 325-326 ◽  
pp. 1318-1323 ◽  
Author(s):  
A.R. Daneshmehr ◽  
D.J. Inman ◽  
A.R. Nateghi

In this paper free vibration analysis of cracked composite beams subjected to coupled bending-torsion loads are presented. The composite beam is assumed to have an open edge crack. A first order theory is applied to count for the effect of the shear deformations on natural frequencies as well as the effect of coupling in torsion and bending modes of vibration. Local flexibility matrix is used to obtain the additional boundary conditions of the beam in the crack area. After obtaining the governing equations and boundary conditions, GDQ method is applied to solve the obtained eigenvalue problem. Finally, some numerical results are given to show the efficacy of the method. In addition, to count for the effect of coupling on natural frequencies of the cracked beams, different fiber orientations are assumed and studied.


2020 ◽  
Vol 6 (2) ◽  
pp. 61
Author(s):  
Muhittin Turan ◽  
Volkan Kahya

In this study, free vibration analysis of layered composite beams is performed by using an analytical method based on trigonometric series. Based on the first-order shear deformation beam theory, the governing equations are derived from the Lagrange’s equations. Appropriate trigonometric series functions are selected to satisfy the end conditions of the beam. Navier-type solution is used to obtain natural frequencies. Natural frequencies are calculated for different end conditions and lamina stacking. It was seen that the slenderness, E11/E22 and fiber angle have a significant effect on natural frequency. The results of the study are quite compatible with the literature.


2014 ◽  
Vol 21 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Atilla Ozutok ◽  
Emrah Madenci ◽  
Fethi Kadioglu

AbstractFree vibration analyses of angle-ply laminated composite beams were investigated by the Gâteaux differential method in the present paper. With the use of the Gâteaux differential method, the functionals were obtained and the natural frequencies of the composite beams were computed using the mixed finite element formulation on the basis of the Euler-Bernoulli beam theory and Timoshenko beam theory. By using these functionals in the mixed-type finite element method, two beam elements, CLBT4 and FSDT8, were derived for the Euler-Bernoulli and Timoshenko beam theories, respectively. The CLBT4 element has 4 degrees of freedom (DOFs) containing the vertical displacement and bending moment as the unknowns at the nodes, whereas the FSDT8 element has 8 DOFs containing the vertical displacement, bending moment, shear force and rotation as unknowns. A computer program was developed to execute the analyses for the present study. The numerical results of free vibration analyses obtained for different boundary conditions were presented and compared with the results available in the literature, which indicates the reliability of the present approach.


2021 ◽  
Vol 226 ◽  
pp. 108854
Author(s):  
Hanzhe Zhang ◽  
Qin Wu ◽  
Yunqing Liu ◽  
Biao Huang ◽  
Guoyu Wang

2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


Sign in / Sign up

Export Citation Format

Share Document