scholarly journals The residual stress characteristics and mechanical behavior of shot peened fiber metal laminates based on the aluminium-lithium alloy

2020 ◽  
Vol 254 ◽  
pp. 112858
Author(s):  
Huaguan Li ◽  
Hao Wang ◽  
René Alderliesten ◽  
Junxian Xiang ◽  
Yanyan Lin ◽  
...  

2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.





2022 ◽  
pp. 115142
Author(s):  
Lu Yao ◽  
Shaofeng Zhang ◽  
Xiaojian Cao ◽  
Zhenyuan Gu ◽  
Changzi Wang ◽  
...  




2021 ◽  
Vol 41 (3) ◽  
pp. 215-221
Author(s):  
E. N. Kablov ◽  
V. V. Antipov ◽  
R. I. Girsh ◽  
N. Yu. Serebrennikova ◽  
A. N. Konovalov




Fiber Metal Laminates (FML) are a class of composites that are recently employed to substitute sole metals in various applications like aerospace applications. In this investigation, a new type of FML was successfully fabricated using compression moulding in which Aluminium and ceramics mat are stacked in the presence of epoxy resin. To improve the bonding by ensuring the flow of resin through the laminates, drilling with various pattern on the Aluminium sheet and ceramic mat were performed before subjected to compression to form FML. Aluminium sheets with Zig-zag pattern performed in a better way due to the improvements in bonding. In addition, drilling operation was done on the FML to ensure the de-lamination resistance and machinability. The drill bit before and after drilling was inspected by using optical microscope to understand the machinability behaviour of the FML.



2019 ◽  
Vol 92 ◽  
pp. 133-141 ◽  
Author(s):  
M. Emami Mehr ◽  
H. Aghamohammadi ◽  
S.N. Hosseini Abbandanak ◽  
Gh R. Aghamirzadeh ◽  
R. Eslami-Farsani ◽  
...  


2016 ◽  
Vol 152 ◽  
pp. 687-692 ◽  
Author(s):  
Huaguan Li ◽  
Yubing Hu ◽  
Xuelong Fu ◽  
Xingwei Zheng ◽  
Hongbing Liu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document