Compressive buckling behaviour of steel corrugated-plates in contact with a rigid medium

2020 ◽  
pp. 113356 ◽  
Author(s):  
Meng-Zheng Wang ◽  
Yan-Lin Guo ◽  
Xiao Yang ◽  
Jing-Shen Zhu
Author(s):  
Sayed Behzad Talaeitaba ◽  
Farshid Khamseh ◽  
Mohammad Ebrahim Torki

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


2021 ◽  
Vol 187 ◽  
pp. 106953
Author(s):  
Yujian Zhang ◽  
Yongfeng Luo ◽  
Xiaonong Guo ◽  
Yunsong Li

2019 ◽  
Vol 41 (2) ◽  
pp. 67-73
Author(s):  
Czesław Machelski

AbstractA characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.


2006 ◽  
Vol 23 (11) ◽  
pp. 2928-2931 ◽  
Author(s):  
Zhao Yan ◽  
Shao Cheng-Gang ◽  
Luo Jun

2018 ◽  
Vol 130 ◽  
pp. 1549-1557 ◽  
Author(s):  
Enlu Wang ◽  
Kai Li ◽  
Jinda Mao ◽  
Naveed Husnain ◽  
Deli Li ◽  
...  

2017 ◽  
Vol 12 (2) ◽  
pp. 75-84
Author(s):  
Aleksandr Pavlenko ◽  
Anton Surtaev ◽  
Oleg Volodin ◽  
Vladimir Serdyukov

Experimental results on hydrodynamics of cryogenic liquid film flow over the surface of the single elements of the structured packing are presented. Based on the comparison of experimental data, the effect of microtexture form, diameter of the holes on the zones of liquid film spreading over a corrugated surface is shown for different values of the film Reynolds number. It is shown that the presence of combined microtexture (with the periodic change in its direction at the height of the sheet) leads to a better spreading of the liquid nitrogen film on the surface of the corrugated perforated sheet. Analysis of experimental data shows that the presence of the periodic zones with vertical orientation of the microchannels on the sheets with the combined microtexture provides the greater flow of liquid through the holes compared to the sheet having the horizontal direction of microtexture. The use of smaller holes, while maintaining the same total area occupied by holes, at the small degree of irrigation also leads to increasing size of the wetting zones on the sheet with combined microtexture.


Sign in / Sign up

Export Citation Format

Share Document