A layerwise, stress approach model of laminated shells

2021 ◽  
Vol 267 ◽  
pp. 113775
Author(s):  
Axel Fernando Domínguez Alvarado ◽  
Alberto Díaz Díaz
Keyword(s):  
Author(s):  
M. Amabili ◽  
J. N. Reddy

A consistent higher-order shear deformation nonlinear theory is developed for shells of generic shape; taking geometric imperfections into account. The geometrically nonlinear strain-displacement relationships are derived retaining full nonlinear terms in the in-plane displacements; they are presented in curvilinear coordinates in a formulation ready to be implemented. Then, large-amplitude forced vibrations of a simply supported, laminated circular cylindrical shell are studied (i) by using the developed theory, and (ii) keeping only nonlinear terms of the von Ka´rma´n type. Results show that inaccurate results are obtained by keeping only nonlinear terms of the von Ka´rma´n type for vibration amplitudes of about two times the shell thickness for the studied case.


2019 ◽  
Vol 161 (A1) ◽  

The presence of cut outs at different positions of laminated shell component in marine and aeronautical structures facilitate heat dissipation, undertaking maintenance, fitting auxiliary equipment, access ports for mechanical and electrical systems, damage inspection and also influences the dynamic behaviour of the structures. The aim of the present study is to establish a comprehensive perspective of dynamic behavior of laminated deep shells (length to radius of curvature ratio less than one) with cut-out by experiments and numerical simulation. The glass epoxy laminated composite shell has been prepared in the laboratory by resin infusion. The experimental free vibration analysis is carried out on laminated shells with and without cut-out. The mass matrix is developed by considering rotary inertia in a lumped mass model in the numerical modeling. The results obtained from numerical and experimental studies are compared for verification and the consistency between mode shapes is established by applying modal assurance criteria.


1978 ◽  
Vol 58 (3) ◽  
pp. 311-318 ◽  
Author(s):  
K.N. Shivakumar ◽  
A.V. Krishna Murty

Sign in / Sign up

Export Citation Format

Share Document