Reliability Assessment of Fiber-reinforced Polymer Cable-anchorage System

2021 ◽  
pp. 114308
Author(s):  
Zheqi Peng ◽  
Xin Wang ◽  
Jingyang Zhou ◽  
Zhishen Wu



2019 ◽  
Vol 22 (8) ◽  
pp. 1952-1964 ◽  
Author(s):  
Bo Feng ◽  
Xin Wang ◽  
Zhishen Wu

Aiming to address the problems of stress concentration on conical wedge anchorage, a fiber-reinforced polymer cable anchorage with segmental variable stiffness of the load transfer medium was proposed. The key parameters that affect the anchorage behavior were investigated. The mechanical properties of the carbon fiber–reinforced polymer tendon and load transfer medium were tested. The failure mode, anchoring efficiency, stress, and displacement in the anchor zone were studied. The parameter optimization was performed using an experimentally verified finite element simulation. The parameters of the anchorage system with large capacity were evaluated. The results demonstrate that the compressive strength of the load transfer medium is the designed stress limit for the anchorage system. The cable does not slip or become damaged in the anchor zone, and the anchoring efficiency reaches 91%. The distribution of the shear and radial stress on the cable surface is smooth, and the stress concentration is greatly relieved. The result of the finite element simulation is consistent with the experimental values when the friction coefficient is 0.15, and the material and geometric parameters of the anchorage system with cable forces of 5000, 10,000, 15,000, and 20,000 kN are suggested. The geometric parameters of the anchor system with diverse cable capacity can be preliminarily designed based on the fitting equations.



2004 ◽  
Vol 31 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Burong Zhang ◽  
Brahim Benmokrane

Corrosion resistance, high strength, and advantageous strength-to-weight ratio enable fiber reinforced polymers (FRPs) to have substantial potential to replace steel tendons in prestressed applications. One of the main technical obstacles to wide use of FRPs in the construction industry is the methodology to anchor FRP tendons to achieve their full strength. High tensile to compression and shear strength ratios make it necessary to develop a new anchorage design concept for FRP tendons. This paper gives a literature review of bond-type anchorage systems and the mechanics of stress transfer by bond from FRP tendons to grout and reports an experimental study on a newly developed bond-type anchorage system with carbon fiber reinforced polymer (CFRP) Leadline 8-mm-diameter rods. The test program consisted of nine monotonic tensile tests, two pullout tests, and two proving tests on the anchorage system with Leadline single- or 9-rod tendons. The test results showed that the developed anchorage system with 250-mm bond length ensures full development of the tensile strength of Leadline mono-rod tendons. The bond strength of Leadline 9-rod tendons is 14 MPa for a bond length of 95 mm, 62% of that of mono-rod ones with a bond length of 80 mm. The anchorage system with a 400-mm bond length gives at least 90% of the tensile strength of Leadline 9-rod tendons and also demonstrates an acceptable sustained loading behaviour in accordance with existing codes.Key words: anchorage, bond stress, creep, grout, polymers, rod, slip, tendon.



2020 ◽  
Vol 39 (9-10) ◽  
pp. 327-344
Author(s):  
Qiang Wang ◽  
Hong Zhu ◽  
Bai Zhang ◽  
Yixuan Tong ◽  
Fei Teng ◽  
...  

Fiber-reinforced polymer (FRP) composites have been widely used to strengthen the deteriorated reinforced concrete structures due to their outstanding characteristics of light weight, high strength, as well as noncorrosion. A successful strengthening with the FRP composites would equip the existing structures with the prominent improvement in terms of the durability, ductility, and bearing capacity. Current studies indicate that a simple and reliable anchorage system for the FRP composites will help improve the performance of the strengthened structures both efficiently and economically. Up till now, various anchorage systems have been developed for the FRP composites. Therefore, it is necessary to select appropriate anchorage systems according to different needs and establish relevant design specifications. In view of the aforementioned objectives, this paper systematically summarizes the anchoring mechanism of anchorage systems for two commonly used FRP products (FRP laminates and FRP bars) in different strengthened systems. Additionally, a state-of-the-art review as well as the advantages and disadvantages of each anchorage system are presented. Finally, shortcomings in the current state of knowledge and recommendations beneficial to further study are put forward.



2022 ◽  
pp. 136943322110572
Author(s):  
Shao Lian ◽  
Ou Jinping ◽  
Zhou Zhi

Carbon fiber–reinforced polymer (CFRP) rods have been considered as a candidate material for prestressed concrete applications because of their superior properties. For current applications, successful use of CFRP rods is linked to an efficient anchorage system design. This paper presents a newly developed anchorage system for CFRP rods and the design concept that the extrusion process is used to generate gripping force. The proposed anchorage system consists of a steel barrel and an aluminum sleeve, and an extrusion region is designed on the outside of barrel to generate a suitable contact pressure distribution on the CFRP rod. A mathematical model was proposed to estimate the contact pressure on the CFRP rod and the capacity of anchorage system. The simulation of extrusion and loading process was conducted with a three-dimensional (3D) finite-element (FE) model. The key design parameters of anchorage system were analyzed to obtain an optimized parameter combination. The experimental validation showed that the new anchorage system is capable of allowing the CFRP rod to attain the ultimate tensile strength.



Sign in / Sign up

Export Citation Format

Share Document