Influence of process parameters on resin content of filament-wound composite based on simulation of dual-phase resin flow

2021 ◽  
Vol 276 ◽  
pp. 114585
Author(s):  
Shijun Chen ◽  
Qiaoguo Wu ◽  
Lei Zu ◽  
Qian Zhang ◽  
Guiming Zhang ◽  
...  
Author(s):  
P C Tse ◽  
S R Reid ◽  
S P Ng

Closed-form solutions from complementary strain energy are derived for the spring stiffnesses of mid-surface symmetric, filament-wound, composite circular rings under unidirectional loading. A three-dimensional finite element analysis (FEA) including the effects of transverse shear has also been applied to study the problem. Four > 45° and four > 75° E-glass/epoxy composite rings of odd numbers of covers were tested. Comparisons of the results obtained from the two methods with experimental data are made and the results are found to be in good agreement. The FEA prediction of stiffness is always higher than the theoretical result. The relationships between the spring stiffnesses and the winding angles and geometry of the filament-wound composite ring are considered and discussed.


1996 ◽  
Author(s):  
J. Wlodarski ◽  
Charles Pergantis ◽  
Thomas Mulkern ◽  
James Kleinmeyer

Author(s):  
Soo-Jeong Park ◽  
Yun-Hae Kim

The failure mechanism of composites dominates the matrix, fiber and interface, and in general, the matrix corresponds to the definitive cause of damage. A filament–wound composite structure involves a notable bridging effect owing to the matrix between the layers, and particle additives are generally adopted to strengthen the matrix. However, particle additives exhibit a low performance when applied to structures, owing to the dispersibility and particle agglomeration. In this study, the strengthening performance of carbon nanotube (CNT)/epoxy interleaves was experimentally verified to facilitate their implementation in the structural design of a filament–wound cylinder structure. The burst pressure, compression, bending and interfacial bonding strength of the cylinder improved by approximately 20%, 161%, 16% and 36%, respectively, and the positioning of CNT/epoxy interleaves was a more notable influencing factor compared to the proportion of CNTs in the entire winding layer. The number of macro voids decreased inside the epoxy modified CNT. The findings demonstrated that the incorporation of CNTs through CNT/epoxy interleaves could facilitate the matrix strengthening and enhance the interfacial bonding.


Sign in / Sign up

Export Citation Format

Share Document