scholarly journals Influence of boundary conditions on the behaviour of composite channel section subjected to pure bending – Experimental study

2022 ◽  
Vol 279 ◽  
pp. 114727
Author(s):  
Filip Kaźmierczyk ◽  
Mariusz Urbaniak ◽  
Jacek Świniarski ◽  
Tomasz Kubiak
2021 ◽  
Vol 245 ◽  
pp. 114561
Author(s):  
Yeyun Cai ◽  
A. Rezania ◽  
Fang Deng ◽  
L. Rosendahl ◽  
Jie Chen

2012 ◽  
Vol 12 (02) ◽  
pp. 377-394 ◽  
Author(s):  
J. MOHANTY ◽  
S. K. SAHU ◽  
P. K. PARHI

This paper presents a combined experimental and numerical study of free vibration of industry-driven woven fiber glass/epoxy (G/E) composite plates with delamination. Using the first-order shear deformation theory, an eight-noded two-dimensional quadratic isoparametric element was developed, which has five degrees of freedom per node. In the experimental study, the influence of various parameters such as the delamination size, boundary conditions, fiber orientations, number of layers, and aspect ratio on the natural frequencies of delaminated composite plates are investigated. Comparison of the numerical results with experimental ones shows good agreement. Fundamental natural frequencies are found to decrease with the increase in the delamination size and fiber orientation and increases with the increase in the number of layers and aspect ratio of delaminated composite plates. The natural frequency of the delaminated composite plate varies significantly for different boundary conditions.


Author(s):  
Foster Kwame Kholi ◽  
Hariharan Kallath ◽  
Alberto Mucci ◽  
Man Yeong Ha ◽  
Jason Chetwynd-Chatwin ◽  
...  

2012 ◽  
Vol 446-449 ◽  
pp. 3264-3272 ◽  
Author(s):  
Li Min Sun ◽  
Yi Zhou ◽  
Xue Lian Li

In recent years, structural health monitoring has been paid more and more attention in bridge engineering community. Previous researches showed that ambient temperature was one of principal factors affecting structural modal parameters in long-term. In this paper, an experimental study on correlation between dynamic properties of a cable-stayed bridge and its structural temperature was performed under temperature controlled laboratory environment. Using hammer impacting method, a dynamic testing was conducted based on a steel cable-stayed bridge model which had a span layout of 0.9+1.9+0.9m. During the experiment, the first six vertical bending modes under the environmental temperature of 0, 20 and 40°C were identified with the consideration of three kinds of boundary conditions at the deck’s ends as to two degrees of freedom, i.e. the longitudinal translation (UX) and the rotation about the transverse beam (RotZ). The above boundary conditions are UX & RotZ not constrained, UX constrained only and UX & RotZ constrained, attempting to simulate the different conditions of the bridge expansion joints. The efforts were paid to explain the physical mechanism of the results based on the updated FE model. This experimental study indicates a tendency that the frequency of the cable-stayed bridge model decreases with the increase of temperature. And furthermore, the relative difference of frequencies between 0 and 40 °C is affected by boundary conditions; in other words, when the deck is free to expand, the variation of model’s frequencies is smaller than that when the deck is restrained to expand, which is similar to the condition of the bridge’s expansion joints cannot work as normal. This experimental study can give some reference to the research of SHM and damage identification for cable-stayed bridges.


2014 ◽  
Vol 79 ◽  
pp. 1-7 ◽  
Author(s):  
Krzysztof Magnucki ◽  
Pawel Jasion ◽  
Ewa Magnucka-Blandzi ◽  
Piotr Wasilewicz

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1127 ◽  
Author(s):  
Tomasz Kubiak ◽  
Lukasz Borkowski ◽  
Nina Wiacek

The paper deals with buckling, postbuckling, and failure of pre-damaged channel section beam subjected to pure bending. The channel section beams made of eight-layered GFRP laminate with different symmetrical layups have been considered. The specimens with initially pre-damaged web or flange were investigated to access the influence of impact damage on work of thin-walled structure in the full range of load till failure. The bending tests of initially pre-damage beams have been performed on a universal tensile machine with especially designed grips. The digital image correlation system allowing to follow the beam deflection have been employed. The experimentally obtained results are presented in graphs presenting load-deflection or load vs. angle of rotation relations and in photos presenting impact damages areas before and after bending test. The results show that the impact pre-damages have no significant influence on the work of channel section beams.


Sign in / Sign up

Export Citation Format

Share Document