Correlation Study on Modal Frequency and Temperature Effects of a Cable-Stayed Bridge Model

2012 ◽  
Vol 446-449 ◽  
pp. 3264-3272 ◽  
Author(s):  
Li Min Sun ◽  
Yi Zhou ◽  
Xue Lian Li

In recent years, structural health monitoring has been paid more and more attention in bridge engineering community. Previous researches showed that ambient temperature was one of principal factors affecting structural modal parameters in long-term. In this paper, an experimental study on correlation between dynamic properties of a cable-stayed bridge and its structural temperature was performed under temperature controlled laboratory environment. Using hammer impacting method, a dynamic testing was conducted based on a steel cable-stayed bridge model which had a span layout of 0.9+1.9+0.9m. During the experiment, the first six vertical bending modes under the environmental temperature of 0, 20 and 40°C were identified with the consideration of three kinds of boundary conditions at the deck’s ends as to two degrees of freedom, i.e. the longitudinal translation (UX) and the rotation about the transverse beam (RotZ). The above boundary conditions are UX & RotZ not constrained, UX constrained only and UX & RotZ constrained, attempting to simulate the different conditions of the bridge expansion joints. The efforts were paid to explain the physical mechanism of the results based on the updated FE model. This experimental study indicates a tendency that the frequency of the cable-stayed bridge model decreases with the increase of temperature. And furthermore, the relative difference of frequencies between 0 and 40 °C is affected by boundary conditions; in other words, when the deck is free to expand, the variation of model’s frequencies is smaller than that when the deck is restrained to expand, which is similar to the condition of the bridge’s expansion joints cannot work as normal. This experimental study can give some reference to the research of SHM and damage identification for cable-stayed bridges.

2019 ◽  
Vol 265 ◽  
pp. 03009
Author(s):  
Jozef Melcer ◽  
Daniela Kuchárová ◽  
Gabriela Lajčáková

The SNP Bridge over the Danube in Bratislava represents an attractive steel cable-stayed bridge. Its length is 431.8 m. The submitted paper describes the methodology of experimental testing and presents some results of the loading test. During this test it was observed that the dilatation unit on the right water side shows some failure. Due to this failure the dilatation unit acts as a generator of vibration of the end bridge span. On the basis of experimental measurements this failure was detected and the dilatation unit was renovated.


2012 ◽  
Vol 24 (6) ◽  
pp. 683-692
Author(s):  
Kee Sei Lee ◽  
Seung Jun Kim ◽  
Jun Ho Choi ◽  
Young Jong Kang

2018 ◽  
Vol 18 (12) ◽  
pp. 1850155 ◽  
Author(s):  
Limin Sun ◽  
Yi Zhou ◽  
Zhihua Min

This study investigates the relationship between the temperature and the modal frequencies of bridges through a series of model experiments using a concrete continuous beam bridge model and a steel cable-stayed bridge model in a controlled-temperature chamber. The experimental results show that, for a given boundary condition and in the absence of freezing, a change in temperature affects the structural frequencies of the bridge as it alters the elastic modulus of the bridge materials. The structural frequency tends to linearly decrease with increasing temperature and with the decrease in the frequency of steel bridges smaller than that of concrete bridges. For the particular case of wet concrete bridges, the temperature dependencies of modal frequencies vary dramatically near the freezing point, which is attributable to the freeze–thaw process of concrete pore water. The effect of air humidity on structural frequency is less significant than that of temperature when the boundary conditions remain unchanged. Furthermore, temperature changes may alter the boundary conditions of bridges, thereby affecting the structural frequencies.


2012 ◽  
Vol 20 (7) ◽  
pp. 1096-1105 ◽  
Author(s):  
Weiwei Xu ◽  
Sami F. Masri ◽  
Zhitao Lu ◽  
Hanshan Ding

1986 ◽  
Vol 51 (6) ◽  
pp. 1259-1267
Author(s):  
Josef Horák ◽  
Petr Beránek

A simulation apparatus for the experimental study of the methods of control of batch reactors is devised. In this apparatus, the production of heat by an exothermic reaction is replaced by electric heating controlled by a computer in a closed loop; the reactor is cooled with an external cooler whose dynamic properties can be varied while keeping the heat exchange area constant. The effect of the cooler geometry on its dynamic properties is investigated and the effect of the cooler inertia on the stability and safety of the on-off temperature control in the unstable pseudostationary state is examined.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Renda Zhao ◽  
Yuan Yuan ◽  
Xing Wei ◽  
Ruili Shen ◽  
Kaifeng Zheng ◽  
...  

AbstractBridge construction is one of the cores of traffic infrastructure construction. To better develop relevant bridge science, this paper introduces the main research progress in China and abroad in 2019 from 13 aspects, including concrete bridges and the high-performance materials, the latest research on steel-concrete composite girders, advances in box girder and cable-supported bridge analysis theories, advance in steel bridges, the theory of bridge evaluation and reinforcement, bridge model tests and new testing techniques, steel bridge fatigue, wind resistance of bridges, vehicle-bridge interactions, progress in seismic design of bridges, bridge hydrodynamics, bridge informatization and intelligent bridge and prefabricated concrete bridge structures.


2021 ◽  
Vol 11 (10) ◽  
pp. 4589
Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Marko Bartolac ◽  
Ana Skender

The main principle of vibration-based damage detection in structures is to interpret the changes in dynamic properties of the structure as indicators of damage. In this study, the mode shape damage index (MSDI) method was used to identify discrete damages in plate-like structures. This damage index is based on the difference between modified modal displacements in the undamaged and damaged state of the structure. In order to assess the advantages and limitations of the proposed algorithm, we performed experimental modal analysis on a reinforced concrete (RC) plate under 10 different damage cases. The MSDI values were calculated through considering single and/or multiple damage locations, different levels of damage, and boundary conditions. The experimental results confirmed that the MSDI method can be used to detect the existence of damage, identify single and/or multiple damage locations, and estimate damage severity in the case of single discrete damage.


Sign in / Sign up

Export Citation Format

Share Document