Hygro-thermo-elastic behavior for stiffened metal doubly-curved shallow shells with porous microcapsule coating under low-velocity impact considering in-plane initial load

2022 ◽  
pp. 115213
Author(s):  
Qi He ◽  
Hong-Liang Dai ◽  
Zhang Zhang ◽  
Hong Tang
2015 ◽  
Vol 732 ◽  
pp. 239-246 ◽  
Author(s):  
Tomáš Mandys ◽  
Vladislav Laš ◽  
Tomáš Kroupa ◽  
Robert Zemčík

This paper deals with the progressive failure analysis of sandwich composite beam loaded with transversely low-velocity impact. A user defined material model was used for modeling of the non-linear orthotropic elastic behavior of composite skin. The non-linear behavior of foam core was modeled using Low-Density Foam material model. The numerical model was validated using performed experiment and the results in terms of deflection and contact force time dependencies are mutually compared.


2021 ◽  
Vol 149 ◽  
pp. 103799
Author(s):  
Zireen Z.A. Majeed ◽  
Nelson T.K. Lam ◽  
Emad F. Gad

2021 ◽  
pp. 002199832110293
Author(s):  
Memduh Kara ◽  
Mustafa Arat ◽  
Mesut Uyaner

In this paper, we have investigated the damages of glass fiber reinforced plastic (GFRP) composite tubes under the effect of low-velocity impact (LVI) at cryogenic environment conditions and room temperature. A GFRP composite tube consists of 6 layered E-glass/epoxy samples with a ± 55° winding angle, which produced by the filament winding method. Composite tubes either at room temperature or conditioned by liquid nitrogen at different temperature values (273 K, 223 K, 173 K, and 77 K) were impacted at 5, 7.5, and 10 J. Also, force-time and force-displacement graphs were plotted. The damaged regions of the samples were scrutinized. The damage areas of the GFRP composite tubes were smaller as the temperature decreased. However, the energy absorbed at low-temperature conditions was slightly higher than that absorbed in room temperature. Besides, no micro-cracks developed in the composite tubes after cryogenic conditioning.


Sign in / Sign up

Export Citation Format

Share Document