Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles

2014 ◽  
Vol 70 ◽  
pp. 309-321 ◽  
Author(s):  
Faiz U.A. Shaikh ◽  
Steve W.M. Supit
2021 ◽  
Vol 13 (7) ◽  
pp. 3900
Author(s):  
Norzaireen Azmee ◽  
Yassir M. Abbas ◽  
Nasir Shafiq ◽  
Galal Fares ◽  
Montasir Osman ◽  
...  

In current practice, the performance-based concrete mix (PBCM) approach has become quite popular because it enhances the quality of materials that are fundamentally necessary for a particular situation. In the present study, experimental analysis is performed to determine the optimal mechanical properties and microstructural characteristics of concrete for sustainable development and cost effectiveness. Specifically, a mixture of high-volume fly ash (FA) and ultrafine calcium carbonate (UFCC) is investigated as a partial substitution of cement. For optimizing the concrete’s performance, various curing regimes are applied to evaluate the best conditions for obtaining ideal mechanical and microstructural properties. The results show that concrete containing 10% UFCC with a mean particle size of 3.5 µm blended with 40% FA yielded the best performance, with an enhancement of 25% in the compressive strength in the early age. Moreover, the UFCC improved the compactness and refined the interstitial transition zone (ITZ). However, the effects of the different curing methods on the concrete’s strength were insignificant after 28 days.


2015 ◽  
Vol 59 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Brabha H. Nagaratnam ◽  
Ahmed Faheem ◽  
Muhammad Ekhlasur Rahman ◽  
Mohammad Abdul Mannan ◽  
Moussa Leblouba

2021 ◽  
pp. 1-29
Author(s):  
Himabindu Myadaraboina ◽  
David Law ◽  
Indubhushan Patanikuni

The incorporation of high volume fly ash, up to 80%, in concrete without compromising the mechanical and durability properties is potentially very advantageous to the concrete industry in enabling the delivery of economic, social and environmental benefits. To assess this, two high volume fly ash mix designs incorporating 80% class F ultra-fine fly ash, known as microash and hydrated lime, with 10% silica fume and 0 % silica fume have been investigated. Properties investigated are compressive strength, carbonation, chloride ion penetration, water absorption and permeability. The specimens were cured for a maximum period of 90 days to optimize completion of the hydration reaction. The results show that the concrete manufactured with 80% microash exhibited compressive strength in excess of 40 MPa at 28 days and over 70 MPa at 90 days. The material also displayed excellent durability properties compared to the normal Portland cement concrete and other high volume fly ash concretes. The addition of silica fume improved the strength and durability properties of the material.


Sign in / Sign up

Export Citation Format

Share Document