scholarly journals Ultimate bond strength assessment of uncorroded and corroded reinforced recycled aggregate concretes

2016 ◽  
Vol 111 ◽  
pp. 543-555 ◽  
Author(s):  
Ignasi Fernandez ◽  
Miren Etxeberria ◽  
Antonio R. Marí
2012 ◽  
Vol 166-169 ◽  
pp. 3233-3236 ◽  
Author(s):  
Jun Tao Li ◽  
Jin Jun Xu ◽  
Zong Ping Chen ◽  
Yi Li ◽  
Ying Liang

In order to research the interface bond-slip behaviors of recycled aggregate concrete-filled square steel tube (RACFSST), ten specimens using waste concrete were designed for launch test. The three changing parameters were concrete strength grade, embedded length and recycled coarse aggregate replacement rate. The load–slip curves of square steel tubes and recycled aggregate concrete were obtained, and starting bond strength and ultimate bond strength influenced by each changing parameter were analyzed. The results show that the replacement rate had a slight influence on the starting bond strength and ultimate bond strength, while the embedded length had the opposite effect. The shorter embedded length specimens had larger bond strength. The concrete strength had a relatively large influence on them.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Haifeng Yang ◽  
Zhiheng Deng ◽  
Yinghong Qin ◽  
Liangsheng Lv

This paper investigated bond-slip characteristics of chloride-induced corroded reinforced concrete incorporating different levels of recycled concrete aggregates (RCA). Pullout tests were adopted to evaluate the bonding and debonding behaviors of the embedded rebar experiencing different corrosion levels. Both high- and low-strength concrete were considered. Bond-slip curves were recorded to determine the influences of rebar corrosion levels and RCA replacements on the bond strength and debonding energy of the specimens. Test results indicate that increasing rebar corrosion level gradually weakens the antisliding ability of reinforced recycled aggregate concrete (RAC) except for a small level corrosion and the degradation rate of ultimate bond strength increases with a decrease of compressive strength at 0.5% rebar corrosion. The results also demonstrate that the ultimate bond strength of reinforced RAC slightly decreases with an increase of RCA replacement. However, the relative bond strength between uncorroded rebar and RAC is little affected by RCA content, while it decreases with an increase of RCA replacement in high-strength specimens after rebar corrosion. The debonding energy between deformed rebar and RAC is found decreasing with the increment of the rebar corrosion level and increasing with an increase of RAC content.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunheng Zhou ◽  
Jiazhang Cao ◽  
Zongping Chen

Using recycled aggregate concrete (RAC) in steel-reinforced concrete structure is an effective way to eliminate the adverse effects of recycled aggregate, which has an excellent application prospect. Fire has a great destructiveness to steel-reinforced recycled aggregate concrete (SRRAC) structure; hence, the bond performance of SRRAC after high temperature, as the prerequisite for the composite between steel and RAC, is the key problem for structural safety and the corresponding safety assessment after fire. In this article, the residual bond behaviors of steel-recycled aggregate concrete interface after different high temperatures and spraying water cooling were studied through the push-out test. The failure modes and load–slip curves were examined. The ultimate bond strength, residual bond strength, and elastic bond shear stiffness of specimens after high temperature and cooling for the regime of spraying water were evaluated and compared to that of natural air. A parametric analysis of temperature, replacement percentage, and studs was conducted. A calculation approach for the ultimate bond strength and residual bond strength of SRRAC after high temperature was developed based on the sensitive analysis of gray system theory and regression analysis. Results showed that the bond properties of SRRAC specimens after high temperature were decreased as exposure temperature increased. The cooling regime of spraying water has a more significant influence on the ultimate strength and residual strength than that of natural air. The specimens with studs on both flange and web have the highest bond properties after high temperature. In all the factors, the number of studs showed the largest gray relational degree to the bond strength of SRRAC. The developed approach provided a reliable prediction of bond strength for SRRAC after high temperature.


2011 ◽  
Vol 71-78 ◽  
pp. 1057-1061 ◽  
Author(s):  
Ke Fang Yin ◽  
Yang Han ◽  
Yi Liu

With the centrally pulling-out test, the bond strength of reinforced concrete is measured with different temperatures and different cooling ways after high temperature; and the ultimate bond strength and slip of reinforced and concrete under different conditions are analyzed. The results show that the bonding strength declines gradually with the increase of temperature, and the ultimate slippage also decreases gradually.


Sign in / Sign up

Export Citation Format

Share Document