Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of uniaxial compressive strength of stone masonry units

2016 ◽  
Vol 124 ◽  
pp. 575-581 ◽  
Author(s):  
Emilia Vasanelli ◽  
Angela Calia ◽  
Donato Colangiuli ◽  
Francesco Micelli ◽  
Maria Antonietta Aiello
2020 ◽  
Vol 70 (340) ◽  
pp. 230
Author(s):  
H. Aldeeky ◽  
O. Al Hattamleh ◽  
S. Rababah

Basalt was used as an ornamental stone in any historic and ancient cities in Jordan. Measuring the uniaxial compressive strength (UCS) and the tangent Young’s modulus (Et) in the laboratory requires premium quality specimens with special core dimensions. This research focuses on correlations both UCS and Et with Leeb Rebound Hardness Test (LRH). In the laboratory, UCS, Et, and LRH were performed on 90 core samples extracted from 30 different rock boulders collected from the neighboring area of Umm al-Jimal, a historic city in northeastern Jordan. A strong power correlation with (R2 = 0.888, RMSE = 5.464) was found between non-destructive LRH value and UCS. On the other hand, a moderately strong linear regression with (R2 = 0.792, RMSE = 4.661) was found between Et and LRH. In conclusion, non-destructive LRHs can be used as indictors for evaluating both UCS and Et during the restoration of the historic city Umm al-Jimal and the rehabilitation of other existing structures.


Author(s):  
María Elvira Garrido ◽  
Ferry B. Petnga ◽  
Víctor Martínez-Ibáñez ◽  
José B. Serón ◽  
Carlos Hidalgo-Signes ◽  
...  

AbstractThe effect of exposure to high temperature on rock strength is a topic of interest in many engineering fields. In general, rock strength is known to decrease as temperature increases. The most common test used to evaluate the rock strength is the uniaxial compressive strength test (UCS). It can only be carried out in laboratory and presents some limitations in terms of the number, type and preparation of the samples. Such constrains are more evident in case of rocks from historical monuments affected by a fire, where the availability of samples is limited. There are alternatives for an indirect determination of UCS, such as the point load test (PLT), or non-destructive tests such as the Schmidt’s hammer, that can also be performed in situ. The aims of this research are: (i) measuring the effect of high temperatures and cooling methods on the strength and hardness of a limestone named Pedra de Borriol widely used in several historic buildings on the E of Spain, and (ii) studying the possibility of indirectly obtaining UCS by means of PLT and Leeb hardness tests (LHT), using Equotip type D. Limestone samples were heated to 105 (standard conditions), 200, 300, 400, 500, 600, 700, 800 and 900 ºC and cooled slowly (in air) and quickly (immersed in water). After that, UCS, PLT and LHT tests were performed to evaluate the changes as temperature increases. Results show decreases over 90% in UCS, of between 50 and 70% in PLT index and smaller than 60% in LHT index. Insignificant differences between cooling methods were observed, although slowly cooled samples provide slightly higher values than quickly cooled ones. The results indicate that LHT can be used to indirectly estimate UCS, providing an acceptable prediction. Research on correlating strength parameters in rocks after thermally treated is still scarce. This research novelty provides correlations to predict UCS in historic buildings if affected by a fire, from PLT and non-destructive methods such as LHT whose determination is quicker and easier.


2015 ◽  
Vol 22 (3) ◽  
pp. 391-400 ◽  
Author(s):  
Jiří WITZANY ◽  
Tomáš ČEJKA ◽  
Miroslav SÝKORA ◽  
Milan HOLICKÝ

The majority of load-bearing masonry structures of historic buildings are built of mixed or stone masonry composed of regular or irregular (so-called quarry) masonry units – bricks, sedimentary and metamorphic rock – pos­sessing often very different physical and mechanical characteristics. The identification of residual mechanical properties of stone or mixed masonry of irregular walling units requires the application of a suitable diagnostic method, the as­sessment of the phase of degradation processes and the choice of an appropriate probabilistic model for the strength of mixed masonry. The presented experimental research involves the analysis of the heterogeneity (homogeneity) of mixed masonry of a church from the 17th century. The probabilistic model for masonry strength is developed on the basis of destructive and non-destructive testing of masonry units and mortar. It appears that the probabilistic approach leads to a design value by 75% higher than the deterministic approach.


2021 ◽  
Author(s):  
Hossein Moayedi ◽  
Amir Mosavi

Surmounting the complexities in analyzing the mechanical parameters of concrete entails selecting an appropriate methodology. This study integrates artificial neural network (ANN) with a novel metaheuristic technique, namely satin bowerbird optimizer (SBO) for predicting uniaxial compressive strength (UCS) of concrete. For this purpose, the created hybrid is trained and tested using a relatively large dataset collected from the published literature. Three other new algorithms, namely Henry gas solubility optimization (HGSO), sunflower optimization (SFO), and vortex search algorithm (VSA) are also used as benchmarks. After attaining a proper population size for all algorithms, the Utilizing various accuracy indicators, it was shown that the proposed ANN-SBO not only can excellently analyze the UCS behavior, but also outperforms all three benchmark hybrids (i.e., ANN-HGSO, ANN-SFO, and ANN-VSA). In the prediction phase, the correlation indices of 0.87394, 0.87936, 0.95329, and 0.95663, as well as mean absolute percentage errors of 15.9719, 15.3845, 9.4970, and 8.0629%, calculated for the ANN-HGSO, ANN-SFO, ANN-VSA, and ANN-SBO, respectively, manifested the best prediction performance for the proposed model. Also, the ANN-VSA achieved reliable results as well. In short, the ANN-SBO can be used by engineers as an efficient non-destructive method for predicting the UCS of concrete.


Author(s):  
Seyed Morteza Davarpanah ◽  
Mohammad Sharghi ◽  
Abolfazl Tarifard ◽  
Ákos Török ◽  
Balázs Vásárhelyi

AbstractThe mechanical properties of frozen rocks vary significantly from the properties of the same lithology under ambient temperature. The goal of this paper is to investigate these changes in the physical and mechanical properties of rocks due to saturation and freezing. Besides, the attention was paid on discovering new correlations between the mechanical characteristics. To fulfill these objectives, 36 uniaxial compressive strength tests, 36 Brazilian splitting tests, and 48 point load tests were carried out. The samples were tested in air dry, water saturated, and frozen (− 20 °C) conditions. The measured physical and mechanical parameters were analyzed by using regression analyses. It was found that the average uniaxial compressive strength of frozen samples (21.93 MPa) is 86.4% more than saturated ones (11.76 MPa) but 25.9% less than dry specimens (29.62 MPa). Additionally, high correlations were established between uniaxial compressive strength and IS(50) under air-dry, saturated, and frozen conditions for the investigated marl samples. Furthermore, it is of particular interest to observe a high correlation with the determination coefficient (R2 = 0.95) between the constants of previously published linear regressions of UCS- Is(50) under dry status.


Sign in / Sign up

Export Citation Format

Share Document