Overview of supplementary cementitious materials usage in lightweight aggregate concrete

2017 ◽  
Vol 139 ◽  
pp. 403-418 ◽  
Author(s):  
Kim Hung Mo ◽  
Tung-Chai Ling ◽  
U. Johnson Alengaram ◽  
Soon Poh Yap ◽  
Choon Wah Yuen
2018 ◽  
Vol 10 (11) ◽  
pp. 4304 ◽  
Author(s):  
Afonso Solak ◽  
Antonio Tenza-Abril ◽  
José Saval ◽  
Victoria García-Vera

In view of the global sustainable development, it is imperative that supplementary cementing materials (SCM) be used for replacing cement in the concrete industry and several researchers have shown that mineral admixtures can enhance the workability of lightweight aggregate concrete (LWAC) mixture and its strength. In view of the beneficial effects of using SCM in LWAC, this article aims to verify the possible influence of the use of different types of SCM in the segregation phenomenon of LWAC. Three different SCM were studied: Silica Fume (SF), Fly Ash (FA) and Posidonia oceanica Ash (PA). For each SCM, three mixtures were prepared, considering three different percentage substitutions of cement. An image analysis technique was applied to estimate the segregation in each sample. The results show that a substitution of cement by other materials with different grain size, considering a constant water binder ratio, may also result in a variation of the consistency of concrete and the viscosity of the mortar matrix, which may contribute to increase or reduce segregation.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3041 ◽  
Author(s):  
Jiyu Wang ◽  
Kai Zheng ◽  
Na Cui ◽  
Xin Cheng ◽  
Kai Ren ◽  
...  

Lightweight aggregate concrete manufactured by solid waste or recycled by-products is a burgeoning topic in construction and building materials. It has significant merits in mitigating the negative impact on the environment during the manufacturing of Portland cement and reduces the consumption of natural resources. In this review article, the agricultural and industrial wastes and by-products, which were used as cementitious materials and artificial lightweight aggregate concrete, are summarized. Besides, the mechanical properties, durability, and a few advanced microstructure characterization methods were reviewed as well. This review also provides a look to the future research trends that may help address the challenges or further enhance the environmental benefits of lightweight aggregate concrete manufactured with solid waste and recycled by-products.


This article investigates the slump and compressive strength of artificial lightweight aggregate concrete with Ground Granulated Blast Furnace Slag (GGBFS) and Silica Fume with glass fibres. The increase in usage of cement in the construction industry is a concern for ecological deterioration, in this view; artificial aggregates was manufactured with major amount of fly ash and replacement of cement with various industrial by-products in concrete. An optimum level of GGBFS from 10 to 50% and Silica Fume from 2 to 6% with addition of glass fibres was assessed based on compressive strength values. The compressive strength was conducted for 7 and 28Days of water curing on M30 grade lightweight concrete with constant water to cement ratio as 0.45 and 0.2% of Master Gelenium super plasticizer. The conclusions achieved from the compressive strength of concrete containing GGBFS and Silica Fume was increased as the curing time increases. As a result lightweight aggregate concrete with a cement content of 226 kg/m3 develops 37.3 N/mm2 compressive strength.


Sign in / Sign up

Export Citation Format

Share Document