Residual mechanical properties of stainless steels S30408 and S31608 after fire exposure

2018 ◽  
Vol 165 ◽  
pp. 82-92 ◽  
Author(s):  
Xifeng Gao ◽  
Xupeng Zhang ◽  
Hongbo Liu ◽  
Zhihua Chen ◽  
Hongqiang Li
Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract REMANIT 4439 is a highly corrosion resistant steel with low carbon content, an addition of nitrogen to enhance both mechanical properties and corrosion resistance, and higher molybdenum than most stainless steels to resist pitting and crevice corrosion in chloride media. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-556. Producer or source: Thyssen Stahl AG.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2622
Author(s):  
Malcolm Griffiths

Austenitic stainless steels are used for core internal structures in sodium-cooled fast reactors (SFRs) and light-water reactors (LWRs) because of their high strength and retained toughness after irradiation (up to 80 dpa in LWRs), unlike ferritic steels that are embrittled at low doses (<1 dpa). For fast reactors, operating temperatures vary from 400 to 550 °C for the internal structures and up to 650 °C for the fuel cladding. The internal structures of the LWRs operate at temperatures between approximately 270 and 320 °C although some parts can be hotter (more than 400 °C) because of localised nuclear heating. The ongoing operability relies on being able to understand and predict how the mechanical properties and dimensional stability change over extended periods of operation. Test reactor irradiations and power reactor operating experience over more than 50 years has resulted in the accumulation of a large amount of data from which one can assess the effects of irradiation on the properties of austenitic stainless steels. The effect of irradiation on the intrinsic mechanical properties (strength, ductility, toughness, etc.) and dimensional stability derived from in- and out-reactor (post-irradiation) measurements and tests will be described and discussed. The main observations will be assessed using radiation damage and gas production models. Rate theory models will be used to show how the microstructural changes during irradiation affect mechanical properties and dimensional stability.


2004 ◽  
Vol 10 (3) ◽  
pp. 349-354 ◽  
Author(s):  
F. Danoix ◽  
P. Auger ◽  
D. Blavette

Mechanical properties, such as hardness and impact toughness, of ferrite-containing stainless steels are greatly affected by long-term aging at intermediate temperatures. It is known that the α-α′ spinodal decomposition occurring in the iron–chromium-based ferrite is responsible for this aging susceptibility. This decomposition can be characterized unambiguously by atom probe analysis, allowing comparison both with the existing theories of spinodal decomposition and the evolution of some mechanical properties. It is then possible to predict the evolution of hardness of industrial components during service, based on the detailed knowledge of the involved aging process.


Sign in / Sign up

Export Citation Format

Share Document