Influence of mineral admixtures on the residual mechanical properties and durability characteristics of self-compacting concrete subjected to high temperature

Author(s):  
Tattukolla Kiran ◽  
Mervin Ealiyas Mathews ◽  
Anand N ◽  
U. Johnson Alengaram ◽  
A Diana Andrushia
2014 ◽  
Vol 629-630 ◽  
pp. 259-264
Author(s):  
Gai Fei Peng ◽  
Xiao Li Wang ◽  
Lin Wang

An experimental investigation was conducted to study residual mechanical properties of Ultra-High-Strength concrete with different dosages of glassified micro-bubble after exposure to high temperature. After exposure to different target temperatures (room temperature, 200 °C, 400 °C, 600 °C,800 °C), residual mechanical properties (residual compressive strength, residual tensile splitting strength, residual fracture energy) of Ultra-High-Strength concrete under different conditions including 1 water-binder ratios (0.18), 3 different contents of glassified micro-bubble (0%, 40%, 60%) were all investigated. The effect of different dosage of glassified micro-bubble was studied on residual mechanical properties of Ultra-High-Strength concrete after exposure to high temperature. The results indicate that the variations of different kinds of Ultra-High-Strength concrete with different dosage of glassified micro-bubble are basically the same. With the increase of temperature, the residual mechanical properties increase at first, then decrease. The residual mechanical properties decrease after exposure to high temperature of 800 °C.


2020 ◽  
Vol 9 (1) ◽  
pp. 104
Author(s):  
Arabi N.S.Al qadi ◽  
Madhar Haddad

This experimental study was undertaken to investigate the effects of using local materials (cement, fly ash, super-plasticizer, coarse aggre-gate, and sand) on the mechanical properties of Self-Compacting Concrete (SCC). For this purpose, a total of 31 mixtures of SCC were prepared by the neural network design methods. Furthermore, based on the experimental results, the neural network model-based clear for-mulations were developed to predict the mechanical properties of SCC. The test results have shown that mineral admixtures were very effective on hardened properties of SCC. In addition, it was found that the developed model by using neural network appeared to have a high predictive capacity of hardened properties of SCC with respect to regression and experimental.  


Sign in / Sign up

Export Citation Format

Share Document