Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar

2018 ◽  
Vol 176 ◽  
pp. 250-258 ◽  
Author(s):  
Shihwen Hsu ◽  
Maochieh Chi ◽  
Ran Huang
Author(s):  
Chidanand Patil ◽  
M. Manjunath ◽  
Sateesh Hosamane ◽  
Sneha Bandekar ◽  
Rubeena Athani

2017 ◽  
Vol 265 ◽  
pp. 337-341 ◽  
Author(s):  
M.O. Korovkin ◽  
N.A. Eroshkina

The influence of the milled opoka of Penza field and blast-furnace slag with the polycarboxylate superplasticizer present on the properties of mortar component of the concrete based on blended cement, including Portland cement, fly ash, blast-furnace slag, silica fume, and microquartz has been investigated. Some equations for the dependency of water requirement of the cement mortar component, as well as of its strength with various values of time on proportion of superplasticizer and components of blended binder have been developed. It has been shown that the introduction of opoka increases the water requirement of the mix, insignificantly decreasing the strength, when proportioned up to 15%. The detrimental effect of opoka on the strength considerably reduces with higher superplasticizer content and lower water-to-cement ratio.


2011 ◽  
Vol 343-344 ◽  
pp. 316-321 ◽  
Author(s):  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn ◽  
Arnon Chaipanich

Cement industry is a one of the major sources of environmental pollution therefore the reduction of cement demand should be improved. Fly ash and silica fume is a by-product of industries and it should be reused to reduce the waste pollution. Thus, this study investigated the use of fly ash and silica fume as a cement replacement in binary and ternary blended cements on compressive strength and physical properties of mortar. Autoclaved curing at 130 °C and 20 psi of pressure for 9 h was used in this study. The results show that the compressive strength of binary blended cement mortar with FA tends to decrease with increased FA replacement and shows compressive strength lower than PC control. However, compressive strength of binary blended cement mortar with SF was improved and shows compressive strength higher than that of PC control. The compressive strength of ternary blended cement mortar was higher than binary blended cement at the same level replacement and it increases with increased SF replacement. Moreover, ternary blended cement mortar containing 10%SF by weight contribute in giving compressive strength higher than PC control. The incorporation of FA with SF can enhance workability of blended cement mortar containing only SF replacement.


2018 ◽  
Vol 69 (8) ◽  
pp. 2040-2044
Author(s):  
Georgeta Velciu ◽  
Virgil Marinescu ◽  
Adriana Moanta ◽  
Ladislau Radermacher ◽  
Adriana Mariana Bors

The influence of fly ash adittion (90 % fraction [ 100 mm) on the cement mortar characteristics was studied. The XRD, XRF, SEM and FTIR determinations indicated that fly ash used has a hollow microstructure of microsphere and cenosphere whose total content in SiO2, Al2O3 and Fe2O3 is 88.63 % and that of CaO and MgO of 8.55 %. The mechanical, thermal and dielectric determinations made on mortar samples with content of fly ash in the 0-40 % range have highlighted fact that the mechanical strength of cement mortars is maximal at 20 %, the increase in fly ash content leads to a decrease in relative density and thermal conductivity as well as and to increased dielectric losses tgd.


Sign in / Sign up

Export Citation Format

Share Document