Improving the chloride binding capacity of cement paste by adding nano-Al2O3

2019 ◽  
Vol 195 ◽  
pp. 415-422 ◽  
Author(s):  
Zhiqiang Yang ◽  
Yun Gao ◽  
Song Mu ◽  
Honglei Chang ◽  
Wei Sun ◽  
...  
Author(s):  
Yibiao Teng ◽  
Songhui Liu ◽  
Zhaocai Zhang ◽  
Jiangwei Xue ◽  
Xuemao Guan

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yunsu Lee ◽  
Mingyun Kim ◽  
Zhengxin Chen ◽  
Hanseung Lee ◽  
Seungmin Lim

A chloride-binding capacity is the major factor to mitigate the ingress of chloride into concrete. This paper presents the chloride-binding capacity of Portland cement paste containing synthesized CA2 (CaO·2Al2O3). The CA2 was synthesized in the high-temperature furnace and characterized by X-ray diffraction for inspecting the purity. The synthesized CA2 was substituted for Portland cement by 0%, 5%, and 10% by weight, and the NaCl solution was used as an internal chloride, which is assumed as a total chloride. The chloride-binding capacity of cement paste was calculated from a water-soluble chloride extraction method by the application of the Langmuir isotherm equation. And the hydration products were analyzed using X-ray diffraction and thermogravimetric analysis. We demonstrate that the CA2 increases an AFm phase in the Portland cement system, and the incorporation of CA2 consequently enhances the chloride-binding capacity of cement paste samples.


1997 ◽  
Vol 6 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Anik Delagrave ◽  
Jacques Marchand ◽  
Jean-Pierre Ollivier ◽  
Simone Julien ◽  
Kati Hazrati

2014 ◽  
Vol 599 ◽  
pp. 34-38 ◽  
Author(s):  
Ping Duan ◽  
Zhong He Shui ◽  
Guo Wei Chen

Layered double hydroxides (LDHs) materials could be used in cement and concrete for their ions capturing capacity and to enhance durability of concrete. In this work, properties and chloride binding capacity of different types of LDHs were compared, micro-mechanism of chloride binding of LDHs were analyzed and chloride binding of cement paste incorporating LDHs were investigated. The experimental results show that Mg-Al-NO3 LDHs presents higher chloride ion binding capacity at initial time compared to LDOs calcinated at 500 °C while ion binding capacity of LDHs calms down and LDOs increases with increasing mixing time. Cement paste incorporating LDHs presents higher chloride binding capacity compared with reference sample. All types of LDHs performed beneficial effect on the chloride penetration resistance especially with addition of 1% Mg-Al-NO3 LDOs.


2012 ◽  
Vol 40 (5) ◽  
pp. 20120054 ◽  
Author(s):  
Shui Zhonghe ◽  
Ma Juntao ◽  
Chen Wei ◽  
Chen Xiaoxing

2011 ◽  
Vol 399-401 ◽  
pp. 1191-1195
Author(s):  
Xiang Hao Wu ◽  
Shan Shan Yang ◽  
Cong Kai Zhang ◽  
Pan Yuan

The influence of the way and the volume of adding lime dust to fly ash-cement pastes on chloride physical adsorption capacity, chemical combination capacity and binding capacity of fly ash-cement pastes is investigated by adsorption equilibrium method. The results show that with the volume of lime dust as cement replacement raising, the amount of chloride physically adsorbed by fly ash-cement pastes reduces, while the amount of chloride chemical combining is firstly increase, and then decrease, and it reaches the maximum when the lime dust content is 10% , that of chloride binding is firstly increase, and then decrease, which reaches the maximum when the lime dust content is 5%. In addition, with the volume of lime dust as fly ash replacement increasing , the volume of chloride physically adsorbed by fly ash-cement pastes reduces firstly, and then raises, reaching the minimum when the lime dust content is 6%. Whereas, volume of chloride chemical combining and binding both decrease gradually with the increase of lime dust contents. When the population of lime dust as cement or fly ash replacement is low(less than 15% for cement and 9% for fly ash), effect of lime dust content on chloride binding capacity of fly ash-cement pastes is not obvious (under 7.5%).


2020 ◽  
Vol 232 ◽  
pp. 117219 ◽  
Author(s):  
Zhiqiang Yang ◽  
Shiyu Sui ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Yun Gao ◽  
...  

2010 ◽  
Vol 152-153 ◽  
pp. 363-367
Author(s):  
Ke Feng Tan ◽  
Qing Cao

An experiment was undertaken to investigate the effect of mineral admixtures, w/b, external chloride solution concentration, and carbonation on chloride binding capacity of cementitious paste. The test method was based on equilibrium method. Test results show that incorporating metakaolin, blastfurnace slag, steel slag, and flyash increases chloride binding capacities by 65.9%, 55.3%, 43.9%, and 26.8% respectively. Increasing external chloride concentration and w/c ratio can improve the chloride capacity of pure cement paste. Carbonation of cement paste will reduce the chloride capacity. Chloride binding do affect the durability of reinforced concrete in saline environment.


2016 ◽  
Vol 112 ◽  
pp. 925-932 ◽  
Author(s):  
Zijian Song ◽  
Linhua Jiang ◽  
Ziming Zhang ◽  
Chuansheng Xiong

Sign in / Sign up

Export Citation Format

Share Document