Research on the influence of ultraviolet aging on the interfacial cracking characteristics of warm mix crumb rubber modified asphalt mortar

2021 ◽  
Vol 281 ◽  
pp. 122556
Author(s):  
Lan Wang ◽  
Shichao Cui ◽  
Lei Feng
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangbing Xie ◽  
Shenjia Tong ◽  
Yabi Ding ◽  
Hongni Liu ◽  
Linyuan Liang

Mortar has an important influence on the viscosity and durability of a mixture. The effects of the amount of mineral powder in asphalt mortar on the ultraviolet (UV) aging properties of asphalt were investigated by a Fourier transform infrared spectrum (FTIR), gel permeation chromatography (GPC), and dynamic shear rheometer (DSR). The FTIR results show that the UV-resistant aging ability of asphalt mortar was superior to asphalt and that the carbonyl indices of the SBS- (styrene-butadiene-styrene-) asphalt mortar and matrix asphalt mortar were more significant. The GPC results show that the molecular weight distribution coefficient (Mw/Mn) of the SBS-asphalt-filler mastic is 1.0 and that of the matrix asphalt-filler mastic is 1.2, which is the largest. The macro-property is the most stable. The DSR results show that the matrix asphalt-filler mastic ranging from 1.0 to 1.2 and the SBS-modified asphalt-filler mastic ranging from 0.8 to 1.0 show the best UV aging resistance. Therefore, the effects of the amount of mineral powder cannot be ignored, suggesting that the best mass ratio of the matrix asphalt mortar is 1.2 and that of the SBS-modified asphalt mortar is 1.0 during the UV aging process.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2020 ◽  
Vol 259 ◽  
pp. 119662 ◽  
Author(s):  
Israel Rodríguez-Fernández ◽  
Farrokh Tarpoudi Baheri ◽  
Maria Chiara Cavalli ◽  
Lily D. Poulikakos ◽  
Moises Bueno

Materials ◽  
2016 ◽  
Vol 9 (9) ◽  
pp. 788 ◽  
Author(s):  
Jiuming Wan ◽  
Shaopeng Wu ◽  
Yue Xiao ◽  
Quantao Liu ◽  
Erik Schlangen

2004 ◽  
Vol 16 (1) ◽  
pp. 45-53 ◽  
Author(s):  
S. K. Palit ◽  
K. Sudhakar Reddy ◽  
B. B. Pandey

Sign in / Sign up

Export Citation Format

Share Document