scholarly journals Effect of the Amount of Mineral Powder on the Ultraviolet Aging Properties of Asphalt

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangbing Xie ◽  
Shenjia Tong ◽  
Yabi Ding ◽  
Hongni Liu ◽  
Linyuan Liang

Mortar has an important influence on the viscosity and durability of a mixture. The effects of the amount of mineral powder in asphalt mortar on the ultraviolet (UV) aging properties of asphalt were investigated by a Fourier transform infrared spectrum (FTIR), gel permeation chromatography (GPC), and dynamic shear rheometer (DSR). The FTIR results show that the UV-resistant aging ability of asphalt mortar was superior to asphalt and that the carbonyl indices of the SBS- (styrene-butadiene-styrene-) asphalt mortar and matrix asphalt mortar were more significant. The GPC results show that the molecular weight distribution coefficient (Mw/Mn) of the SBS-asphalt-filler mastic is 1.0 and that of the matrix asphalt-filler mastic is 1.2, which is the largest. The macro-property is the most stable. The DSR results show that the matrix asphalt-filler mastic ranging from 1.0 to 1.2 and the SBS-modified asphalt-filler mastic ranging from 0.8 to 1.0 show the best UV aging resistance. Therefore, the effects of the amount of mineral powder cannot be ignored, suggesting that the best mass ratio of the matrix asphalt mortar is 1.2 and that of the SBS-modified asphalt mortar is 1.0 during the UV aging process.

2011 ◽  
Vol 99-100 ◽  
pp. 1035-1038 ◽  
Author(s):  
Nian Feng Han ◽  
De Jie Zhou ◽  
Xin De Tang

Composite modified asphalts with nano calcium carbonate (nano CaCO3)/ SBS and nano montmorillonite (nano MMT)/SBS were prepared respectively by melt blending. Rolling thin film oven test (RTFOT) was carried out to study the aging properties. The results demonstrate that CaCO3/SBS and MMT/SBS homogeneously disperse in the base asphalt, which lead to an improvement in terms of toughness, strength, and thermal stability. Effects of the nano CaCO3 and nano MMT on the properties of SBS modified asphalt appear as a decreasing penetration, an increasing softening point, and a decreasing ductility. The anti-aging property of the nano MMT/SBS modified asphalt was better than that of the CaCO3/SBS modified asphalt and SBS modified asphalt.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1111 ◽  
Author(s):  
Huanan Yu ◽  
Xianping Bai ◽  
Guoping Qian ◽  
Hui Wei ◽  
Xiangbing Gong ◽  
...  

Styrene Butadiene Styrene (SBS) polymer-modified asphalt binders have become widely used in asphalt pavement because of their advantages in high- and low-temperature performance and fatigue resistance. Asphalt pavement is inevitably exposed to sunlight and ultraviolet (UV) radiation during its construction and service life. However, consideration of the aging effect of UV radiation is still limited in current pavement design and evaluation systems. In order to evaluate the impact of UV radiation on the aging properties of SBS-modified asphalt binders, UV aging tests were performed on Rolling Thin Film Oven Test (RTFOT)-aged samples with different UV radiation intensities and aging times. Sixteen different groups of tests were conducted to compare the rheological properties and functional group characteristics of SBS-modified asphalt binders. Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR), FTIR, and SEM tests were conducted to evaluate the aging mechanisms in various UV aging conditions. The results found that UV radiation seriously destroys the network structure formed by the cross-linking effect in SBS-modified asphalt binders, which aggravates the degradation of SBS and results in a great change of rheological properties after UV aging. The nature of SBS-modified asphalt binder aging resulted from the degradation of SBS and the changes of asphalt binder base composition, which lead to the transformation of colloidal structure and the deterioration of asphalt binder performance. The tests also found that continuous UV radiation can increase shrinkage stress in the asphalt binder surface and leads to surface cracking of the asphalt binder.


2019 ◽  
Vol 9 (3) ◽  
pp. 467 ◽  
Author(s):  
Chen Zhang ◽  
Hainian Wang ◽  
Zhanping You ◽  
Junfeng Gao ◽  
Muhammad Irfan

To uniform the evaluation indicators of Styrene-Butadiene-Styrene (SBS) modified asphalt, the SK70# and SK90# matrix asphalt were modified by different SBS modifier dosage in this study. The test methods in China and Superpave were used to test the performance of each SBS-modified asphalt respectively, from which the appropriate evaluation index of SBS-modified asphalt was determined. The results showed that the addition of SBS modifier improved the high temperature performance and lowered the temperature sensitivity of asphalt binder, while it increased the viscosity of asphalt binder in high temperatures. Due to the variability that appeared in the results of the penetration test by the swelling of SBS-modified asphalt, the penetration test was not recommended to evaluate the performances of SBS-modified asphalt. The softening point of SBS-modified asphalt with the modifier dosages of 4.5%, 5%, 5.5% and 6% increased 5.7%, 12.8%, 22.5% and 26.4% respectively compared to the matrix asphalt for SK70# matrix asphalt, and increased 21.2%, 26.3%, 33.6% and 46.6% respectively compared to the matrix asphalt for SK90# matrix asphalt. The effect of SBS-modifier on the softening point of SK90# matrix asphalt is significantly better than that of SK70# matrix asphalt. The improvement effect of SBS modifier on low temperature performance of matrix asphalt decreased with a decrease in test temperature. When studying the influence of the SBS modifier on the low temperature performance of asphalt binder, it was recommended to use the bending beam rheometer (BBR) test to evaluate the low temperature performance of SBS-modified asphalt.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Yanjuan Tian ◽  
Mulian Zheng ◽  
Hailei Xu ◽  
Chupeng Chen ◽  
Jinhao Zhang

The objective of this study is to develop a highly permeable rejuvenating agent for the recycling of the asphalt pavement. The rheological properties and permeability of recycled asphalt after adding the self-developed rejuvenating agent, as well as two other agents, were compared and evaluated. An improved softening point method was devised to evaluate the permeability. In addition, the recycled asphalt was analyzed using Fourier transform infrared spectroscopy (FTIR). The results showed that the self-developed rejuvenating agent had high permeability, could effectively restore the performance of the aged asphalt, and could improve the aging-resistant property of the recycled asphalt. FTIR analysis showed that the matrix asphalt experienced oxygen absorption and dehydrogenation during the aging process. The aging of the SBS-modified asphalt was achieved via dual aging of the matrix asphalt and SBS-modified components. In addition, the rejuvenating agent CA had an inhibitory effect on asphalt aging, and its recycling efficiency was better than that of the rejuvenating agent A for the aged SBS-modified asphalt. Finally, a relationship between the microscopic functional group index and the macroscopic test index was established.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5067 ◽  
Author(s):  
Guoping Qian ◽  
Changdong Yang ◽  
Haidong Huang ◽  
Xiangbing Gong ◽  
Huanan Yu

Ultraviolet (UV) aging degrades the life span of asphalt pavement, nanomaterials used as modifiers exhibit good shielding function on UV light, but generally degrade the low-temperature property of asphalt, a compound modification was found to be a solution. In this study, nano-SiO2 and rubber powder were blended together with base asphalt to prepare compound modified asphalt. Compound modified asphalt with different blending dosages were subjected to UV light via a self-made UV aging simulation chamber. Basic performance tests and rheological tests were conducted including the UV aging influence. An optimum compound ratio was finally recommended based on the goal to remove the adverse effect of nano-SiO2 on the thermal cracking. Results show that the anti-UV aging property of asphalt is improved obviously due to the blocking function of nano-SiO2 and carbon black in rubber powder, and the enhancing effect of nano-SiO2 is found to be the most significant.


2019 ◽  
Vol 24 (2) ◽  
pp. 148
Author(s):  
Sri Mulyani ◽  
Nono Nono ◽  
Nyoman Suaryana

Asphalt polymer has superior characteristics than conventional asphalt. Styrene Butadiene Styrene (SBS) is a polymer that has proven its performance in heavy traffic, but it must be imported and expensive. Crumb rubber have high potential to be used as an asphalt modifier. Asphalt modified crumb rubber has high viscosity and is not homogeneous, so that the utilization cannot be delayed. This reduces workability in the field. This study aims to obtain asphalt modified crumb rubber which is easier to use by adding materials that do not affect its performance. RejIRE is a low viscosity additive to restore the properties of bitumen on crumb rubber modified. Experiments were carried out by adding variations in RejIRE levels to crumb rubber modified asphalt to determine its characteristics. Continued investigation of the performance of hot paved mixtures for wearing courses compared to asphalt mixtures with Pen 60/70 asphalt and SBS modified asphalt mixtures. The result is the addition of 0.75% RejIRE on asphalt crumb rubber modification have high workability. Overall the performance of the mix with SBS modified asphalt is better, but the mixture of hot paved with modified asphalt crumb rubber has a resistance to permanent deformation superior to the other paved mixtures.


2011 ◽  
Vol 374-377 ◽  
pp. 1409-1413
Author(s):  
Xiao Wei Wu ◽  
Dong Wei Cao ◽  
Hai Yan Zhang

In order to avoid the phase separation of the high density-polyethylene modified asphalt, a composite material modifier was prepared in the melt blending process with High density-Polyethylene (HDPE) and Styrene-butadiene-styrene (SBS) and a filler of Carbon black (CB). The storage stability of composite material (HDPE-SBS) modified asphalt was investigated by hot storage stability test and optical microscopic observation. The storage-stable mechanism of HDPE-SBS modified asphalt was analyzed also. The experimental results indicated that the difference of the softening point after storing at high temperature for 48h was very small. Micrographs of HDPE-SBS modified asphalt demonstrated that HDPE-SBS composite modifier particles dispersed uniformly and compactly and there were no obvious phase separations in the modified asphalt within a certain CB content range.


Sign in / Sign up

Export Citation Format

Share Document