Bond performance of SFRC considering random distributions of aggregates and steel fibers

2021 ◽  
Vol 291 ◽  
pp. 123304
Author(s):  
Wei Zhang ◽  
Deuckhang Lee ◽  
Changjun Lee ◽  
Xuhui Zhang ◽  
Ogwu Ikechukwu
2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Alloy Digest ◽  
1991 ◽  
Vol 40 (1) ◽  

Abstract ELECTRAFIL G-50/SS/5 provides good electrical conductivity at a low loading of stainless steel fibers. It is useful as a shielding material and for current carrying parts. This datasheet provides information on physical properties, and tensile properties as well as fracture toughness. Filing Code: Cp-13. Producer or source: AKZO Engineering Plastics.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 757 ◽  
Author(s):  
Kim ◽  
Hong ◽  
Han ◽  
Kim

In this study, coating equipment for the effective underwater repair of submerged structures was developed. The tensile bond characteristics of selected epoxy resin coatings were investigated by coating the surface of a specimen using each of the four types of equipment. Using the experimental results, the tensile bond strength and the coating thickness were analyzed according to the type of equipment, coating, and curing time. The results show that the type of coating equipment used had the greatest effect on the measured bond strength and coating thickness of the selected coatings. However, the effect of coating type and curing time on the bond strength and the thickness was observed to be insignificant. Compared with the developed equipment, the surface treatment of the coating was observed to be more effective when using the pre-existing equipment, and thus the bond performance of the coating was improved compared to using the pre-existing equipment. Based on the experimental results, improvements and needs involving the equipment for further research were discussed.


Sign in / Sign up

Export Citation Format

Share Document