Performance of two innovative stress sensors imbedded in mortar joints of new masonry elements

2021 ◽  
Vol 297 ◽  
pp. 123764
Author(s):  
Lidia La Mendola ◽  
Maria Concetta Oddo ◽  
Maurizio Papia ◽  
Francesco Pappalardo ◽  
Agatino Pennisi ◽  
...  
Keyword(s):  
AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 66-72
Author(s):  
Tao Pan ◽  
Daniel Hyman ◽  
Mehran Mehregany ◽  
Eli Reshotko ◽  
Steven Garverick

2010 ◽  
Vol 9 (6) ◽  
pp. 679-692 ◽  
Author(s):  
Ricardo J.S. Viana ◽  
Maria B. Fonseca ◽  
Rita M. Ramalho ◽  
Ana F. Nunes ◽  
Cecilia M.P. Rodrigues

By using linear stability theory, we demonstrate theoretically that the critical Reynolds number for the loss of stability of planar Poiseuille flow can be significantly increased or decreased through the use of feedback control strategies which enhance or suppress disturbance dissipating mechanisms in the flow. The controller studied here consists of closely packed, wall mounted, shear stress sensors and thermoelectric actuators. The sensors detect flow instabilities and direct the actuators to alter the fluid’s viscosity by modulating the adjacent wall temperature in such a way as to suppress or enhance flow instabilities. Results are presented for water and air flows.


2000 ◽  
Vol 35 (1) ◽  
pp. 85-95 ◽  
Author(s):  
R.C. Jaeger ◽  
J.C. Suhling ◽  
R. Ramani ◽  
A.T. Bradley ◽  
Jianping Xu
Keyword(s):  

Author(s):  
Srinath Satyanarayana ◽  
Daniel T. McCormick ◽  
Arun Majumdar

In recent years several surface stress sensors based on microcantilevers have been developed for biosensing [1–4]. Since these sensors are made using standard microfabrication processes, they can be easily made in an array format, making them suitable for high-throughput multiplexed analysis. Specific reactions occurring on one surface (enabled by selective modification of the surface a priori) of the sensor element change the surface stress, which in turn causes the sensor to deflect. The magnitude and the rate of deflection are then used to study the reaction. The microcantilevers in these sensors are usually fabricated using material like silicon and its oxides or nitrides. The high elasticity modulus of these materials places limitations on the sensitivity and sensor geometry. Alternately polymers, which have a much lower elastic modulus when compared to silicon or its derivatives, offers greater design flexibility, i.e. allow the exploration of innovative sensor configurations that can have higher sensitivity and at the same time are suitable for integration with microfluidics and electrical detection systems.


SPIE Newsroom ◽  
2011 ◽  
Author(s):  
Yong Liu ◽  
Zhiyong Dai ◽  
Xiaojun Zhou ◽  
Zengshou Peng ◽  
Jianfeng Li ◽  
...  

Author(s):  
Richard C. Jaeger ◽  
Jun Chen ◽  
Jeffrey C. Suhling ◽  
Leonid Fursin

Stress sensors have shown potential to provide “health monitoring” of a wide range of issues related to packaging of integrated circuits, and silicon carbide offers the advantage of much higher temperature sensor operation with application in packaged high-voltage, high-power SiC devices as well as both automotive and aerospace systems, geothermal plants, and deep well drilling, to name a few. This paper discusses the theory and uniaxial calibration of resistive stress sensors on 4H silicon carbide (4H-SiC) and provides new theoretical descriptions for four-element resistor rosettes and van der Pauw (VDP) stress sensors. The results delineate the similarities and differences relative to those on (100) silicon: resistors on the silicon face of 4H-SiC respond to only four of the six components of the stress state; a four-element rosette design exists for measuring the in-plane stress components; two stress quantities can be measured in a temperature compensated manner. In contrast to silicon, only one combined coefficient is required for temperature compensated stress measurements. Calibration results from a single VDP device can be used to calculate the basic lateral and transverse piezoresistance coefficients for 4H-SiC material. Experimental results are presented for lateral and transverse piezoresistive coefficients for van der Pauw structures and p- and n-type resistors. The VDP devices exhibit the expected 3.16 times higher stress sensitivity than standard resistor rosettes.


Sign in / Sign up

Export Citation Format

Share Document